Global warming is expected to intensify the Earth’s hydrological cycle and increase flood and drought risks.

Environmental conditions profoundly affect plant disease development; however, the underlying molecular bases are not well understood. Here we show that elevated temperature significantly increases the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato (Pst) DC3000 independently of the phyB/PIF thermosensing pathway. Instead, elevated temperature promotes translocation of bacterial effector proteins into plant cells and causes a loss of ICS1-mediated salicylic acid (SA) biosynthesis.

Vulnerability of agriculture to climate change is becoming increasingly apparent in recent years. During 2014 and 2015, India experienced trails of unusually widespread and untimely hailstorm events. The increased frequency of hailstorm events, especially in vulnerable ecosystem of Deccan Plateau region of India demanded appropriate measures to minimize adverse impact on agricultural crops.

Original Source

The ability of very high frequency (VHF) (∼50 MHz) windprofilers to measure backscatter, winds and turbulence in the troposphere and the lower stratosphere gives them a unique perspective not available with many other remote sounding radar techniques. This capability has been utilized to study the environment of 31 tornadoes generated in the provinces of Ontario and Quebec in Canada over an 11-year period. Tornadoes were mostly of Enhanced Fujita (EF) types EF0 to EF2, with one being EF3. Focus is on events which produced visible damage.

Given that smallholder farmers are frequently food insecure and rely significantly on rain-fed agriculture, it is critical to examine climate variability and food insecurity. We utilize data from smallholder farmer surveys from 12 countries with 30 years of rainfall data to examine how rainfall variability and household resources are correlated with food security.

Blowflies and houseflies are mechanical vectors inhabiting synanthropic environments around the world. They feed and breed in fecal and decaying organic matter, but the microbiome they harbour and transport is largely uncharacterized. We sampled 116 individual houseflies and blowflies from varying habitats on three continents and subjected them to high-coverage, whole-genome shotgun sequencing. This allowed for genomic and metagenomic analyses of the host-associated microbiome at the species level.

Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C3/C4 plant rotations at moisture levels at and above field capacity over 5 months.

Chloroquine (CQ) and hydroxychloroquine (HCQ) are well-known 4-aminoquinoline antimalarial agents. Scientific evidence also supports the use of CQ and HCQ in the treatment of cancer. Overall, preclinical studies support CQ and HCQ use in anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they are able to sensitise tumour cells to a variety of drugs, potentiating the therapeutic activity. Thus far, clinical results are mostly in favour of the repurposing of CQ.

Achieving universal, safely managed water and sanitation services by 2030, as envisioned by the United Nations (UN) Sustainable Development Goal (SDG) 6, is projected to require capital expenditures of USD 114 billion per year (1). Investment on that scale, along with accompanying policy reforms, can be motivated by a growing appreciation of the value of water. Yet our ability to value water, and incorporate these values into water governance, is inadequate.

Aerosols are significant to the Earth’s climate, with nearly all atmospheric aerosols containing organic compounds that often contain both hydrophilic and hydrophobic parts. However, the nature of how these compounds are arranged within an aerosol droplet remains unknown. Here we demonstrate that fatty acids in proxies for atmospheric aerosols self-assemble into highly ordered three-dimensional nanostructures that may have implications for environmentally important processes.