Making sense of recent energy trends can seem like a high-stakes Rorschach test. Some experts see the boom in renewable energy and the shift away from coal in many countries as evidence that the world is beginning to turn a corner on global warming. Others see simply a continuing reliance on low-cost fossil fuels, slow governmental action and a rising risk of planetary meltdown.

Original Source

Following a decade of unprecedented investment, China now has the world's largest installed base of wind power capacity. Yet, despite siting most wind farms in the wind-rich Northern and Western provinces, electricity generation from Chinese wind farms has not reached the performance benchmarks of the United States and many other advanced economies. This has resulted in lower environmental, economic, and health benefits than anticipated. We develop a framework to explain the performance of the Chinese and US wind sectors, accounting for a comprehensive set of driving factors.

Given the extraordinary proliferation of seawater desalination plants, Israel’s transition to become a country that almost exclusively relies on desalination for municipal water supply is instructive as a case study, especially given concerns about the technology’s prodigious carbon footprint. This article offers a detailed description of the country’s desal experience with a focus on the associated energy requirements, environmental policies and perspectives of decision makers. Israel’s desalination plants are arguably the most energy-efficient in the world.

The Paris Agreement requires countries to articulate near-term emissions reduction strategies through to 2025 or 2030 by communicating nationally determined contributions (NDCs), as well as encouraging the formulation of long-term low-emission development strategies (Article 4.19). In response, many countries have either submitted or are preparing mid-century strategies.

States have historically been the primary drivers of climate change policy in the US, particularly with regard to emissions from power plants. States have implemented policies designed either to directly curb greenhouse gas (GHG) emissions from power plants, or to encourage energy efficiency and renewable energy growth. With the federal government withdrawing from the global climate agreement, understanding which state-level policies have successfully mitigated power-plant emissions is urgent.

The latest roadmap to a 100% renewable energy future from Stanford's Mark Z. Jacobson and 26 colleagues is the most specific global vision yet, outlining infrastructure changes that 139 countries can make to be entirely powered by wind, water, and sunlight by 2050 after electrification of all energy sectors.

This article discusses a novel way of purifying biodiesel without using water in the biodiesel purification process.In this work, waterless purification of biodiesel has been investigated using cow dung ash as an adsorbent.

India is on a path to reduce its carbon emission intensity with a major thrust on increasing the grid-connected solar photovoltaic capacity. However, the carbon footprint in agriculture is on the rise. Heavy subsidies for electricity and diesel to pump groundwater for irrigated agriculture, combined with lack of regulations on water withdrawal, are resulting in both groundwater over-exploitation and increased carbon emissions.

Cumulative photovoltaic (PV) power installed in 2016 was equal to 305 GW. Five countries (China, Japan, Germany, the USA, and Italy) shared about 70% of the global power. End-of-life (EoL) management of waste PV modules requires alternative strategies than landfill, and recycling is a valid option. Technological solutions are already available in the market and environmental benefits are highlighted by the literature, while economic advantages are not well defined. The aim of this paper is investigating the financial feasibility of crystalline silicon (Si) PV module-recycling processes.

The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached.