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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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Several studies addressing the supply and demand for 
food in China suggest that the nation can largely meet 
its needs in the coming decades. However, these studies 
do not consider the effects of climate change. This 
paper examines whether near future expected changes 
in climate are likely to alter this picture. The authors 
analyze the effect of temperature and precipitation on 
net crop revenues using a cross section consisting of both 
rainfed and irrigated farms. Based on survey data from 
8,405 households across 28 provinces, the results of the 
Ricardian analysis demonstrate that global warming is 
likely to be harmful to China but the impacts are likely 
to be very different in each region. The mid latitude 
region of China may benefit from warming but the 
southern and northern regions are likely to be damaged 

This paper—a product of the Sustainable Rural and Urban Development Team, Development Research Group—is part 
of a larger effort in the department to mainstream research on climate change and policy implications. Policy Research 
Working Papers are also posted on the Web at http://econ.worldbank.org. The authors may be contacted at jxwang.ccap@
igsnrr.ac.cn, robert.mendelsohn@yale.edu, and adinar@worldbank.org. 

by warming. More precipitation is beneficial to Chinese 
farmers except in the wet southeast. Irrigated and rainfed 
farmers have similar responses to precipitation but not to 
temperature. Warmer temperatures may benefit irrigated 
farms but they are likely to harm rainfed farms. Finally, 
seasonal effects vary and are offsetting. Although we were 
able to measure the direct effect of precipitation and 
temperature, we could not capture the effects of change 
in water flow which will be very important in China. 
Can China continue feeding itself if climate changes? 
Based on the empirical results, the likely gains realized by 
some farmers will nearly offset the losses that will occur 
to other farmers in China.  If future climate scenarios 
lead to significant reductions in water, there may be large 
damages not addressed in this study.
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I. Introduction 
For quite some time, global food security issues have been in the center of a policy debate in the 

economic literature.  One of the major aspects of this debate has been the role of China, a giant 

economy currently with a population of 1.30 billion, 20% of the world’s population, and with 

expected population growth rate of 1.2-2.3 percent per year into the next decade (CIA 2007).  

China’s share in the world’s production of primary agricultural commodities is significant, 

mainly in grains, soybean, and cotton.  In 2003, China’s share was 15, 30, 17, 19, and 31 percent 

for wheat, rice, maize, soybean, and cotton, respectively (Winters and Yusuf, 2007:16).  

According to Census data (CNBS, 2001), shares of these crops in five of China’s provinces 

(Hebei, Henan, Shandong, Anhui and Jiangsu), considered the bread basket of China, range 

between 70-80 percent of the area sown.   

With projected increases in population and standard of living in China, feeding larger 

numbers of more affluent people could become a challenge if not accompanied by increased 

supply (Paarlberg (1997).  Several studies provide grain production projections into the not so 

distant future, but variations in the estimates are quite wide.  Fan and Agcaoili-Sombilla (1997) 

compare several studies with projections of grain production in China (Brown 1995; Rosegrant, 

Agcaoili-Sombilla, and Perez, 1995; Huang, Rozelle, and Rosegrant 1997; Tuan 1994; Mitchell 

and Ingco, 1993; and OECF, 1995).  The reasons for the differences in projections among these 

studies are beyond the scope of this paper.  However, one common feature of all these studies is 

that they do not take into account the potential effect of future climate change on agricultural 

production. 

As scientific evidence becomes more convincing that rising greenhouse gases will warm 

the planet (IPCC 2007), it has become ever more important to understand the impacts of global 

warming.  The impacts to the agriculture sector from climate change are among the largest and 

best documented.  Agronomic studies suggest that crop yields may fall if the same crops are 

grown in the same places under various climate change scenarios (Reilly et al. 1996, McCarthy 

et al 2001).  Studies applying the Ricardian Approach in Africa (Kurukulasuriya et al 2006) and 

South America (Seo and Mendelsohn 2007) suggest that warming will reduce farm net revenues.  

However, no single country is more important than China in terms of the number of people at 

risk and the impact on the world economy that may result from future climate change.  Will 

China continue to be able to feed itself as the climate warms?    
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Many agronomic modeling studies have assessed the impacts of climate change on 

several grain crops (e.g., rice, maize, wheat) in various regions of China.  The general findings of 

these studies are that crop yields will fall in China like those in other developing countries (e.g., 

Matthews and Wassmann, 2003; Parry et al., 2004; Tao et al., 2006; Wu et al., 2006; Xiong et 

al., 2007; Yao et al., 2007).  These and other crop modeling studies have the same caveat in that 

they assume the same crops are grown in the same places as climate changes.  Further, crop 

modeling studies in China do not include any economic values attached to the estimated yield 

reductions.  And, there are no agro-economic models (such as Adams et al., 1995) that convert 

crop modeling results into economic outcomes for China. 

The only economic study in China to date of the effect of warming on agriculture is a 

Ricardian analysis (Liu et al. 2004).  Curiously, this study finds that warming will increase 

average farm net revenue, not reduce it.  However, this Ricardian study is based on county level 

data with severe data limitations.  Therefore, it is difficult to weigh the results of this study in 

comparison to the results of the host of crop studies that suggest that warming is harmful.  Thus, 

there is not sufficient evidence to determine whether China can continue feeding itself given 

global warming. 

To answer this question, this paper reports the results of a new study that measures the 

sensitivity of Chinese agriculture to warming, employing farm level data.  Like the Liu et al., 

(2004) study, the analysis in this paper relies on the Ricardian method (Mendelsohn, et al., MNS 

1994).  The analysis is conducted on 8,405 farms sampled across 28 provinces.  The data include 

information on each farm’s economic operations, locational data, and other farm characteristics.  

Net revenue per hectare is regressed on climate and a number of other exogenous control 

variables.  Matching the location to climate data (rainfall and temperature) and soils, it is 

possible to examine the effect of climate on net revenue controlling for many other factors.   

The available data allow us to measure econometrically the direct effects of temperature 

and precipitation on crop net revenues. Unfortunately, the amount of irrigation water a farmer 

uses is not available in the dataset.  Although we know whether each farm is irrigated or not, we 

do not know water availability or cost.  If future climate scenarios reduce available water 

supplies, this is likely to have an important harmful effect on China’s agriculture that this study 

does not take into account.  The analysis does not capture the indirect effect of climate change on 
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crop net revenues through the supply of irrigation water and should be addressed in future 

studies.    

 The paper is organized as follows.  We briefly review the methodology of the Ricardian 

method in the next section.  Section III discusses the available data and the construction of the 

data set.  In the Section IV, we present the estimation results and simulation of national and 

regional impacts for marginal changes in climate.  The paper concludes with a summary of the 

key results, a discussion of policy relevance, and suggestions for future research.    

II. METHODOLOGY  

The Ricardian approach (MNS 1994) is the primary method that we use in the analysis in this 

paper.  The Ricardian model assumes that each farmer wishes to maximize income subject to the 

exogenous conditions of their farm. Specifically, the farmer chooses the crop and inputs for each 

unit of land that maximizes:  

∑∑∑∑∑ −−−−=
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where π is net annual income, Pqi is the market price of crop i, Qi is a production function for 

crop i, Xi is a vector of annual inputs such as seeds, fertilizer, and pesticides for each crop i, Li is 

a vector of labor (hired and household) for each crop i, Ki is a vector of capital such as tractors 

and harvesting equipment for each crop i, C is a vector of climate variables, IRi is a vector of 

irrigation choices for each crop i, W is available water for irrigation, S is a vector of soil 

characteristics, Px is a vector of prices for the annual inputs, PL is a vector of prices for each type 

of labor, PK is the rental price of capital, and PIR is the annual cost of each type of irrigation 

system.  

 If the farmer chooses the crop that provides the highest net income and chooses each 

endogenous input in order to maximize net income, the resulting chosen net income will be a 

function of just the exogenous variables:  

),,,,,,,(*
IRKLXq PPPPSWCPf=π                                                                                              (2) 
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With perfect competition for land, free entry and exit will ensure that excess profits are driven to 

zero.  Land rents will consequently be equal to net income per hectare (Ricardo 1817; MNS, 

1994).   

 The Ricardian function is intended to be a locus of the most profitable crops with respect 

to each exogenous variable such as temperature. The net income function does not include less 

profitable alternatives.  It consequently does not look like the response function for any single 

crop but rather as a flatter function across all choices. Figure 1 depicts a theoretical set of crop 

specific net income functions with respect to temperature as well as the overarching Ricardian 

function.  For example, at cool temperatures, farmers would choose to grow wheat (Triticum 

aestivum L.).  As temperatures rise, farmers would no longer want to grow wheat because it 

would become less profitable.  They instead would shift to maize (Zea mays L.). As temperatures 

increase further, they might want to shift to fruit (Panicum miliaceum) or vegetables which are 

more heat tolerant.  The Ricardian function, Equation (2), captures the locus of maximum profits 

for each temperature or precipitation level.  It is estimated across crops and across inputs, 

revealing the net effect of changing the exogenous variable.  Because farmers are assumed to 

make adaptations that are profitable, the method automatically captures the adaptation inherent 

in the market (MNS, 1994).   

 The Ricardian model was developed to explain the variation in land value per hectare of 

cropland over climate zones (MNS, 1994).  In repeated studies in the United States, Brazil, Sri 

Lanka and South America, the land value per hectare of cropland has been found to be sensitive 

to seasonal precipitation and temperature (Mendelsohn and Dinar 1999; 2003; Seo et al. 2005; 

Seo and Mendelsohn 2007).  Similar results have also been found for crop net revenue in India, 

Africa, South America, and Israel (Mendelsohn and Dinar 1999; Kurukulasuirya et al 2006; Seo 

and Mendelsohn 2007; Fleischer et al. 2007).   Because the response is nonlinear, a quadratic 

functional form has been used in every Ricardian study.  

There have been a number of criticisms of the Ricardian approach since it was first 

developed.  There was initially a concern about irrigation (Cline 1996; Schlenker et al 2005).  

This study and other analyses (Mendelsohn and Dinar 2003; Kurukulasuriya and Mendelsohn 

2006; Mendelsohn and Seo 2007) address this concern by examining the differences in the 

response to warming between irrigated and rainfed land.  A related concern is the importance of 
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water.  Some studies have controlled for water supply (Mendelsohn and Dinar 2003 and Fleisher 

and Mendelsohn 2007).  However, water data is not available in this study.  This is important 

since climate change may reduce (or increase) the amount of water that is available to farmers 

and this effect is not captured in this analysis.  Given China’s clear dependence on irrigation 

water, this is an important omission.   

There have also been concerns about the role of price changes (Quiggin and Horowitz 

1999).  The Ricardian model does not take into account price changes and thus will overestimate 

welfare effects.  Although changes in local supply might be dramatic, prices of food crops tend 

to be determined by global markets.  With the expansion of crop production in some parts of the 

world and the contraction in others, the changes in the price of crops from global warming is 

expected to be small (Reilly et al. 1994).  Finally, there is a concern that the Ricardian analysis 

does not take into account the cost of transition (Kelly et al 2005).  Although we expect 

transition costs to be relatively small, the Ricardian method does not measure them.    

III. DATA AND MODEL SPECIFICATIONS 

The climate data (monthly temperature and precipitation) were gathered from the National 

Meteorological Information Center in China.   The data are based on actual measurements in 753 

national meteorological stations that are located throughout China.  The temperature and 

precipitation data were collected from 1951 to 2001. We rely on the mean values of these 

variables (climate normals) over this time period for each month.  

Because we cannot include every month in the analysis because of the high correlation 

from month to month, we average the monthly climate data into four seasons.  Winter is the 

averaged of December to February, spring is the average of March to May, summer is the 

average of June to August, and fall is the average of September to November.   

Socio-economic data come from China’s National Bureau of Statistics (CNBS).  The data 

were collected by a highly trained, professional enumeration staff in 2001 as part of the annual, 

nation-wide Household Income and Expenditure Survey (HIES).  The data cover 45,700 farm 

households in 4365 villages, 533 counties and 31 provinces.   

During the survey enumerators from CNBS collected a rich set of information at both the 

village and household level.  The data provide us with a measure for the dependent variable, net 
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crop revenue for each household.  Net crop revenue here is the gross crop revenue (or total sales 

for each crop) less all expenditures for production, including expenditures on seed, fertilizer, 

irrigation, pesticide, machinery, plastic sheeting, hired labor and custom services.  All of the 

output that was consumed by each household was given a value based on a price of the output as 

if it was sold on the market.  Neither family labor nor a household’s rent for contracted land is 

counted as an expenditure.  Therefore, net revenue is a measure of returns to land and family 

labor.  Based on the total cultivated land of each household, we can calculate net crop revenue 

per hectare.     

The data set also includes a number of other household and village characteristics.  These 

variables are important from a theoretical point of view since they can give us measures of fixed 

factors which belong in Ricardian regressions.  Using the data, we are able to construct variables 

that measure the education level of members of the farm household, each family’s land area, a 

number of indicators about the topographical environment of each village (e.g., if it is located on 

a plain or in a mountainous region), each household’s irrigation status (measured as the share of 

area that is irrigated in the village) and the ease of access to markets (e.g., the presence of paved 

roads between the village and key services; the distance to each township’s government).  Such 

variables are used as control variables in the regressions.  Descriptive statistics of the key 

variables are in Table 1.  The Table provides key data about the entire sample as well as two 

important subsamples: farms that rely on irrigation and farms that do not (rainfed).  

In addition to information about climate and socio-economic conditions, the 

characteristics of a region’s soils are also important determinants of net crop revenue.  To 

account for soils, we downloaded a soil map from FAO’s website.  There are three major soil 

types—clay, sand and loam soils.  The final set of variables for our analysis was created by 

generating a variable measuring the share of cultivated area with each type of soil.  These soil 

variables are used directly in the regression.  We also include county elevation data into the 

regression to control the influence of elevation on net crop revenue.  

In order to proceed with our analysis of the effect of climate on agriculture, we need to 

match the climate data with the socio-economic data of each farmer.  Although there are 752 

counties with meteorological stations and 533 counties in which CNBS collected HIES data, 

there are only 124 counties in which there are both meteorological stations and CNBS samples. 
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In order to ensure that we have a relatively good match between the crop revenue (and other 

socio-economic) data and climate information, we restrict our sample to only those households in 

counties with meteorological stations.  In total, this means that our final sample has 8405 

households in 915 villages, in 124 counties in 28 provinces.1    

Model Specifications 

In order to capture the expected nonlinear relationship between net revenue and climate, we 

specify the following model to examine the impacts of climate change on agriculture in China: 

                                    2
43

2
210 eZdPbPbTbTbbV j

j
j +⋅+⋅+⋅+⋅+⋅+= ∑                                    (3) 

where the dependent variable, V, is net crop revenue per hectare (as defined above).  The 

variables T and P represent vectors of temperature and precipitation (four seasons).   In addition, 

we include Z, a vector of county-, village- and household-level socio-economic and other control 

variables.  Included in Z are our measures of soil type (Z1), elevation of the county (Z2), terrain 

(Z3=1 if the village is located on a plain and 0 if the village is in a mountain), the share a 

village’s cultivated area that is irrigated (Z4), the conditions of a village’s road (Z5=1 if there is a 

road that connects the village to the outside world and 0 if there is not) and a variable measuring 

the distance between the village and township government (Z6).  There are also a series of 

household-level variables in Z, including the average education level of the laborers in the family 

(Z7), a household’s land area (Z8) and whether or not a household belongs to a production 

cooperation (Z9=1 if yes and 0 if no).  The symbols bk and dj are vectors of the coefficients to be 

estimated, and e is an error term.   

 In order to assess the robustness of the model, we try a number of alternative 

specifications of equation 3.  For example, we also try using the log of net revenue as the 

dependent variable.  We test whether precipitation and temperature are independent by adding 

                                                 
1 We have tried various approaches (such as linear and non-linear regression; GIS methods) to extrapolate the 
climate data from the location of the meteorological stations in the counties with weather data across the landscape 
of counties and villages in adjacent counties (or those counties without weather data).  However, our results suggest 
that such extrapolation methods introduce substantial amounts of data measurement error into the analysis.  In order 
to avoid such measurement error in the climate variables, we have chosen to drop all farm households that are in 
counties that do not have climate data (i.e., that do not belong to a county with a meteorological stations).  In 
addition, we dropped those households which did not cultivate any crops (characterized with total cropping sown 
areas of zero).   
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climate interaction terms.  We break the sample between irrigated and rainfed villages and 

estimate separate regressions for each subsample (Schlenker et al. 2005).  As in Schlenker et al. 

(2005), we assume in this analysis that the choice of irrigation is exogenous.  

Based on this model, the change in land value from a marginal change in temperature or 

precipitation evaluated at a particular vector of seasonal temperatures T or precipitation P is: 

 
 2

2

43

21

Pbb
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                                                                                                                    (4) 

With four seasons, one can calculate the marginal impact of each season.  While seasonal effects 

might be of some interest, the more relevant expression for studying global warming is the 

overall change in annual climate.  The annual marginal effect can be calculated as the sum of the 

seasonal marginal effects.   

IV. RESULTS 

China’s Climate 

In general, China’s climate is best described as monsoonal (Ren 2007).  There are clear 

temperature and precipitation differences across China that vary by region and by season.  The 

average annual temperature in China is 10.9℃ (Figure 1). 2   From the south to the north, 

temperature declines steadily.  For example, in the southern areas of China the average annual 

temperature is as high as 20-24 ℃.  In the middle part of the country (in the Yangtze River 

Basin) the average annual temperature is 12-20 ℃.  Further north, beginning in the Yellow River 

Basin and moving to the far north of the country, the average annual temperature is only 4-12 ℃. 

As typical of temperate regions, the temperature in China also differs significantly by season 

(Figure 2).  

There are even greater seasonal and regional differences in precipitation.  Average annual 

precipitation rates in China as a whole are near world average at about 820 mm (Figure 3).  In 

                                                 
2 Temperature here means the Surface Air Temperature (SAT). 
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the south, however, annual precipitation ranges from 1000 to 1500 mm.  In the north, in the 

Huaihe River and Yellow River Basins, annual precipitation is only 600-1000 mm.  It is only 

500-600 mm in the rest of northern China.  Generally, it is also quite dry in Western China.  

 The seasonal patterns of precipitation also vary by region.  In the north, more than 70 

percent of each year’s precipitation is concentrated in the summer.  Precipitation during the 

winter months is very low, less than 5 percent of the annual total (Ren, 2007).  In contrast, in the 

south, precipitation is mainly concentrated in the spring as well as the summer.  These regional 

differences in climate may be reflected in our results, where climate change has different effects 

on regions with different present climates. 

 Recent evidence indicates that global temperatures have been rising since 1750 and 

especially since 1950 (IPCC 2007).  There is supporting evidence in China as well of 

temperature increases between 1950 and the present (Ren, 2007).  Of much greater concern are 

projections that temperatures will rise even more quickly into the future (IPCC 2007).  It is not 

yet clear how large these temperature changes will be, but climate research consistently predicts 

warming (IPCC 2007).  The exact amount of warming across China is therefore not known, but 

scientists are confident warming will occur here.  The climate models also all predict an increase 

in global precipitation but how these changes are distributed across different regions is not yet 

known.  Individual locations across China may get more or less rainfall.  The change in 

precipitation patterns is more uncertain than the change in temperature for China. 

Relationship between Net Crop Revenue and Climate 

On average, in 2001 the crop net revenue in China was 10,146 Yuan per ha (1353 USD) (Table 

1).  The reliance on irrigation and the availability of ample rain in certain regions of China has 

led to relatively high net revenues compared to other countries (even developed countries such as 

the US) (Rozelle et al., 2007).  The high levels of per hectare output in China offset the 

somewhat lower real prices.  These net crop revenues differ by region.  In general, net crop 

revenue in the south is higher than in the north and net revenues are higher in the east than in the 

west.  

Just as significantly, if not more, net crop revenues also vary between villages that are 

irrigated and those that are rainfed (Table 1).  The average net crop revenue in irrigated villages 

was 12319 Yuan per hectare (1643 USD), a rate that is more than 20 percent higher than average.  
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In contrast, average net revenues in rainfed villages were only 7464 Yuan per hectare (995 USD), 

more than 25 percent lower than average.   

Simple statistics indicate that there is possibly some relationship between climate and net 

crop revenue.  In Table 2, we group farms by net revenue.  Farms with higher net revenues tend 

to have higher temperatures and more rain.   For example, the twenty percent of farms with the 

lowest net revenues had annual temperatures of 8.2oC and annual precipitation of 595mm.  In 

contrast, the twenty percent of farms with the highest net revenue had temperatures of 15.8oC 

and precipitation of 1152 mm.  This positive association between net revenue, precipitation, and 

temperature applies to both rainfed and irrigated farms.    

Table 2, of course, does not control for many factors that might vary from farm to farm.  

In order to do a more complete analysis, we must control for these factors.  It is also important to 

do a more thorough job of exploring the role of seasonal variation in climate.  We therefore turn 

to the Ricardian regressions to do a more thorough analysis of how climate and other factors 

affect net revenues.  

Ricardian Regression Analysis 

In Table 3, we explore a regression model of net revenue per hectare on climate, soils, and a 

number of farm variables.  We examine this regression for three samples: all farms, farms that 

are irrigated, and farms that are rainfed (no irrigation).  Note that there are 8405 farms in the full 

sample, there are 2750 irrigated farms, and there are 2119 rainfed farms.  There are 

approximately 3500 farms in villages with a mix of rainfed and irrigated farms where we cannot 

determine whether the farm is irrigated or not.   The goodness of fit measures (adjusted R2) for 

all of the models range from 0.17 to 0.26, a level that is relatively high for cross sectional 

household data3.   

The analysis of all farms shown in the first column in Table 3 reveals that many of the 

control variables are highly significant.  Clay and silt soils increase net revenues per hectare 

(compared to sand).  It is advantageous for a farmer to be on a plain, have access to a road, and 

participate in a production association.   It is disadvantageous for a farm to be a larger size or 
                                                 
3 The adjusted R2 of our estimation results are also similar to that in other countries, for example, in the research of 
Africa (Kurukulasuriya and Mendelson, 2006), the adjusted R2 is 0.35; for Brazil and India, it is 0.40 and 0.56 
separately (Mendelson, et.al., 2007). 
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higher elevation.  Other factors such as whether the village has more irrigated land, laborers with 

lower education, or is closer to the township government do not matter4.   

Perhaps most important are the results for the climate variables.  At least one climate 

variables is significant in every season except for fall temperature and summer precipitation.  

Many of the coefficients of the squared terms are significant implying that climate effects are 

nonlinear.  However, the quadratic nature of the climate variables makes them difficult to 

interpret.  In Table 4, we calculate the marginal impact of climate using both the linear and 

squared coefficients of each variable.  The first column of Table 4 presents the annual marginal 

temperature and precipitation effects, calculated at the sample mean, for the entire sample.   The 

results suggest that higher annual temperatures slightly reduce net revenues per hectare in China 

10 USD/◦C.  The overall temperature elasticity is -.09 (% change in net revenue/ % change in 

temperature).  Consistent with earlier Ricardian analyses, the seasonal temperature effects are 

larger and offsetting.  Higher spring temperatures are very harmful whereas warmer summer and 

especially winter temperatures are beneficial.   Higher annual precipitation increases net revenue 

(15 USD/mm/mo).  The overall precipitation elasticity is +0.8 (% change in net revenue/ % 

change in precipitation).   As with the seasonal temperature effects, the seasonal precipitation 

effects are larger and offsetting.  A wetter spring is harmful whereas a wetter winter is very 

beneficial.  

We also examine a number of alternative specifications in the Table A-1 in the Annex.  

We examine one model with the log of net revenue as the dependent variable.  This model yields 

much higher R squared values.  The model does a better job of explaining some observations 

with much higher net revenue per hectare than the sample average.  However, the log model 

yields very similar results to the linear model explored in this paper.  Another specification that 

we explored examines the importance of controlling for land per household.  The land per 

household is correlated with climate and so whether or not it is controlled affects the climate 

results.  However, using the log of land or using a quadratic to approximate the role of farm size 

has similar effects.  A third important variant that we explored concerns adding climate 

interaction terms.  We found that these terms were generally insignificant except for the fall 
                                                 
4 The insignificant parameter may be explained by the following two factors: all villages are not very far from the 
township therefore the variation among villages is small and nearly all villages have roads connected to the 
townships.  These imply that variations in transportation costs or transaction costs within townships are very small. 

 12



season.  However, adding interaction terms confounds the role of temperature and precipitation 

so that marginal effects depend upon both variables.  For simplicity, we rely on the model 

presented in this paper.  However, the results are robust across a number of specifications. 

Because of the importance of irrigation in China, it is helpful to understand the climate 

sensitivity of rainfed versus irrigated farms (as first suggested by Schlenker et al. 2005).  Earlier 

research has indicated that rainfed and irrigated farms have different climate sensitivities in 

Africa (Kurukulasuriya and Mendelsohn 2007) and South America (Mendelsohn and Seo 2007).  

We consequently split the Chinese sample between farms that were in rainfed villages and farms 

that were in irrigated villages.  Farms that were in villages with both were omitted.  We then 

estimated the net revenue model on the two subsamples as shown in columns 2 and 3 of Table 3.   

Most of the coefficients for rainfed and irrigated farms are not similar to each other.  The 

one exception is that larger plots for both samples have lower net revenues.  Other variables, 

such as percent clay soil, distance to township government, share of labor that is uneducated, and 

farmer characteristics remain insignificant.  But the irrigated and rainfed regressions often had 

different coefficients.  Silt soil and participating in a production association increased the net 

revenue of irrigated land but had no significant effect on rainfed land.  Being on a plain increased 

the value of rainfed land but decreased the value of irrigated land.  Being on a road increased the 

value of rainfed land but had no effect on irrigated land.  Higher elevation decreased the value of 

rainfed land but had no effect on irrigated land.   

The climate coefficients for the rainfed and irrigated regressions in Table 3 were also 

different.  Many of the climate coefficients are still significant.  Some had the same size though 

not the same magnitude.  Finally, some coefficients switched sign, such as fall temperature, 

summer precipitation, and fall precipitation.  However, to judge the effect of climate, it is helpful 

to calculate the marginal impacts.  The results, shown in columns 2 and 3 of Table 4 reveal that 

temperature has a very different effect on irrigated versus rainfed farming.  Higher annual 

temperatures increase the net revenue of irrigated farms by +68 USD/◦C but reduce the net 

revenue of rainfed farms by -95 USD/◦C.   The seasonal effects are also different.  Warmer falls 

are particularly harmful to irrigated farms whereas warmer summers and winters are beneficial.  

In contrast, warmer springs and falls are harmful to rainfed farms whereas warmer winters are 

beneficial.  Higher annual precipitation, however, has almost identical effects on irrigated and 
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rainfed farms.  Wetter climates increase irrigated net revenues by 27 USD/mm/mo and rainfed 

net revenue by 23 USD/mm/mo.  Both irrigated and rainfed farms prosper more than the full 

sample regression suggests.  The lower marginal values in the full sample may be due to a 

measurement error because the full cost of irrigation is not measured.  As rain increases, farmers 

find it profitable to switch from irrigation to rainfed agriculture to save irrigation costs.  In 

practice, they earn more.  But using this data without irrigation costs, it appears that they are 

switching from high valued irrigation to low valued rainfed farming.   

Regional Impacts 

Although the average effect of temperature is negative and the marginal effect of precipitation is 

positive, the effects are quite different in different regions of the country.  In order to understand 

how climate impacts vary across China, the marginal impact of temperature and rainfall for the 

full sample are mapped across China in Figures 4 and 5.  The maps indicate what would happen 

with small changes in climate in the immediate future.  Figure 4 on temperature suggests distinct 

spatial patterns with gains in the mid latitude region of China (up to 127 USD/ha/◦C) but 

damages in the southern and northern latitudes (up to -165 USD/ha/◦C).  The marginal impact of 

precipitation is mapped for all farms in Figure 5.  Additional precipitation in the wet southeast 

would be harmful (up to -153 USD/ha/mm/mo).  Places that are already wet will lose from more 

rain.  The rest of China would enjoy small gains (up to 65 USD/ha/mm/mo).   

Maps 4 and 5 include both the effects on rainfed and irrigated farms.  In order to 

understand what happens to each type of farm, we address them separately in the remaining 

figures.  The marginal temperature results of the irrigation regression are shown in Figures 6.   

The temperature impacts in Figure 6 are not similar to those in Figure 4.  With irrigated farms, 

warmer temperatures are more beneficial in the southeast and southwest region (128-255 

USD/ha/◦C).  Further, irrigated farms in the far south are no longer harmed by warming.  

However, the rest of China has similar results.  Farms in the central region continue to enjoy 

mild benefits from warming (up to 127 USD/ha/◦C).  The far north has the same marginal 

damages.  The marginal precipitation effects for irrigated farms are shown in Figure 7.  There 

remain some strong similarities with Figure 5 except for one major difference.  The damages in 

the wet southeast disappear and become small benefits.  All irrigated farms in China enjoy small 

benefits from increased rain.  
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The marginal temperature results of the rainfed farm regression are shown in Figure 8.  

The temperature impacts show a marked progression as one moves from the far south to the far 

north.  There are large damages (-166 to -331 USD/ha/◦C) in the far south from warming.  These 

turn into smaller damages in most of the rest of the country (up to -165 USD/ha/◦C).  The far 

north and a few cold places in the southeast get small gains from warming (up to 127 

USD/ha/◦C).  The results imply that most of China is slightly too warm for rainfed agriculture.  

Any further warming is therefore harmful except in the far north.  The marginal precipitation 

effects are shown in Figure 9.  Figure 9 is almost identical to Figure 5.  Increased rain will 

damage rainfed farms in the wet southeast but benefit rainfed farms in the rest of the country.  

V. CONCLUSION AND POLICY IMPLICATIONS 

This study conducts a Ricardian analysis on 8405 farm households across 28 provinces in China.  

Net revenues are regressed on seasonal climate and a number of control variables.  Several 

specifications of the model are estimated.  The empirical results are robust.  The average impact 

of higher temperatures is negative and the average impact of more precipitation is positive.  

However, marginal increases in temperature and rainfall have very different effects on different 

farm types in different regions.   Warming is beneficial to some farmers in China but harmful to 

others.  Rainfed farmers are more vulnerable than irrigated farmers.  Warming is likely helpful to 

rainfed farmers in very cold places but it will likely harm rainfed farmers in most of China and 

especially the far south.  More rain is likely to be harmful to rainfed farmers in the wet southeast 

but will benefit farmers in the remaining regions.  Irrigated farmers are less sensitive to 

temperature.  However, irrigated farmers, like rainfed farmers, will gain from increased rainfall. 

These basic results are similar to results from other countries (MNS 1994; Mendelsohn et 

al 2001; Mendelsohn and Dinar 2003; Kurukulasuriya et al 2006; Seo and Mendelsohn 2007).  

First, climate has an effect on net revenue in every country.  Second, higher temperatures 

increase the net revenues of irrigated farms.  Third, higher temperatures are beneficial to rainfed 

farms in cooler climates but harmful to rainfed farms in warm or hot climates.  Fourth, more 

precipitation is beneficial unless there is an excessive amount of rain.  Fifth, seasonal impacts 

vary and are offsetting.    

Our results, however, are not completely consistent with previous economic work on 

Chinese agriculture (Liu et al., 2004).  Our study finds that warming is harmful to Chinese 
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agriculture whereas Liu et al. found it was beneficial.  We believe that this difference may lie in 

choice of data sets.  We believe that the farm data set in this study is far more reliable than the 

county data set used by Liu et al.   However, not all of the results of the two studies were 

different.  Both studies found that increased rainfall was beneficial.   Both studies found that 

climate effects are nonlinear and effects differ by season.  Hence, although the temperature 

results are different, many of the results of the two studies are similar.   

What about comparisons between our economic analysis and crop studies?  Although 

both analyses predict that global warming will be harmful to China’s agriculture, the economic 

analysis suggests that the impact will be smaller.  What explains the difference between the 

economic results and the crop study results?  We believe that the crop study models lead to more 

pessimistic results because they do not consider adaptation.  They do not include the possibility 

of crop switching, changes in irrigation, or other changes that farmers might undertake.  These 

adaptations are implicitly captured in the Ricardian method. 

The marginal effect of higher temperature for China is only mildly harmful for two 

important reasons.  First, a very large fraction of farms in China are irrigated.  Second, the 

rainfed land in China is largely in temperate or cool regions.  Small amounts of warming are 

consequently not as harmful.  Of course, some regions of China may suffer large damages.  The 

dry Western region is vulnerable to global warming scenarios.  However, the agricultural sector 

as a whole in China is only mildly vulnerable.   

An important message in the research is that irrigation is critical to China’s agriculture 

system.  Part of China’s ability to cope with future climate change depends on its capacity to use 

water for irrigation; nearly 60 percent of cultivated land in China is irrigated.  Our analysis 

assumes that water will continue to be available.  Data was not available to measure the amount 

of water each farmer was using.  It was therefore not possible to measure the importance of 

available water.  This could be a critical problem for China if climate warming makes water 

increasingly scarce.  The negative results of this study could become much larger if warming 

forces many irrigated farms to become rainfed farms.  Clearly there is a strong need in China for 

further analysis of the effects of climate change on water.   

Can China continue feeding itself if climate changes?  Based on our empirical results, the 

answer is yes, the likely gains realized by some farmers will nearly offset the losses that will 
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occur to other farmers in China.  An important caveat, however, is that our analysis assumes that 

there will be no change in water supply.  However, it is likely that with at least some climate 

scenarios, water supplies will be reduced which could lead to large losses.  The effect of water 

needs to be incorporated in future studies. 

It is also quite apparent that the effects of climate change are not going to be uniform 

across the country.  Warming will assist areas that are currently very highly productive and will 

further handicap areas that have below average productivity.  In particular, warming will help the 

southeast region but hurt the west and far north.  Chinese policy makers need to be aware that 

warming is likely to impose additional costs on specific regions that already have below average 

incomes.   

The fact that the crop studies predict much larger damages than the Ricardian studies 

suggests that adaptation matters.  The ability of Chinese farmers to change and adapt to new 

conditions has allowed China to outperform other agricultural economies in the world and will 

continue to be important with respect to climate change.  However, for farmers to be able to 

endure future climate changes, it is critical that policies allow them to get the most out of the 

available factors of production and natural resources.  The results of this study suggest that the 

direct effect of temperature rise and precipitation change on farms may not be a great risk to 

China in the near future.  However, the effect of climate change on water is likely to be quite 

important.  Given that water is already a very critical resource in certain regions of China, policy 

makers may want to use this resource wisely, especially in regions where water is scarce.  

Climate change increases the pressure to develop institutions and infrastructure in water scarce 

regions to treat water as a valuable resource.  Although uniform national policies have many 

desirable properties, when it comes to water, it is critical to develop efficient policies in the water 

scarce regions. 

In order to address future warming, China may also consider developing management 

practices and new varieties (crops and livestock) for a warmer world.  Finally, China would 

benefit from adaptation at large, by having new technologies (research), educating farmers about 

better technologies (extension), and building credit institutions to allow farmers to purchase and 

apply needed technology.   
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Table 1  Descriptive statistics for major variables used for analyzing the determinants of net crop 
revenue 

All farm Irrigated farm  Rainfed farm   

Mean Standard 
deviation Mean Standard 

deviation  Mean Standard 
deviation

Net cropping revenue per ha 
(Yuan/yr) 10146 12280 12319 12846  7464 9736 

Spring temp (oC) 13.2 4.7 13.8 3.5  11.05 4.7 
Summer temp (oC) 24.2 3.2 25.1 2. 6  22.6 3.4 
Fall temp (oC) 13.7 5.6 14.4 4.9  11.1 5.6 
Winter temp (oC) 0.3 8.5 0.9 6.7  -3.3 8.9 
Spring prec (mm/month) 76.2 65.3 81.7 79.1  53.2 43.4 
Summer prec (mm/month) 144.2 62.5 128.4 72.1  139.8 51.9 
Fall prec (mm/month) 56.8 32.5 48.6 31.4  53.8 33.2 
Winter prec (mm/month) 23.2 24.1 28.2 27.8  15.0 19.0 
Share of land areas with  

clay soil (%) 30 38 31 40  17 31 

Share of land areas with 
silt soil (%) 31 39 28 36  43 43 

Plain (1=Yes; 0=No) 0.45 0.50 0.75 0.43  0.35 0.48 
Road (1=Yes; 0=No) 0.97 0.18 0.97 0.18  0.95 0.22 
Distance to township  

government (km) 6.1 4. 5 5.2 3.6  7.1 5.2 

Share of irrigated areas 
in village (%) 48.9 39.9      

If participate production 
association (1=Yes; 
0=No) 

0.03 0.18 0.05 0.22  0.01 0.11 

Share of labor without  
receiving education (%) 7.5 18.5 6.1 16.1  9.6 21.6 

Cultivated land area per 
household (ha) 0.72 1.00 0.57 0.72  0.99 1.29 

Note: The observation for all households is 8405, the observation for irrigated households is 
2750 and the observation for rainfed households is 2119. 
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Table 2  Net crop revenue, temperature and precipitation in 2001 

Temperature Precipitation Grouped by net crop revenue Average net crop 
revenue 

Annual Annual 

Yuan/hectare Yuan/hectare oC mm 

All farm  

7-3339 1886 8.2 595 
3340-5895 4607 11.5 798 
5895-8821 7238 13.9 946 
8823-13595 10875 14.8 1015 
13597-184346 26125 15.8 1152 

Irrigated farm  
88-5399 3482 10.5 541 
5402-7841 6635 13 740 
7851-10456 9177 14.2 936 
10484-15493 12670 14.4 946 
15531-168394 29630 15.7 1141 

Rainfed farm  
8-2147 1226 6.9 506 
2151-3966 3013 8.1 703 
3973-6217 5054 10.1 789 
6227-10698 8104 12.8 971 
10714-173210 19952 13.9 958 

Note: We sort the net crop revenue and then divide the samples into five groups where each  
group has the same numbers of samples. In the all farm sample, the sample number of 
each group is 1681. In the irrigated farm sample, the sample number of each group is 
550. In the rainfed farm sample, the sample number of each group is 424. 
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Table 3 Regressions of Net Crop Revenue  
 

 Net Crop Revenue (Yuan/ha) 

 All Farms Irrigated Rainfed 
Spring temp 1,453 4,149 1,789 
 (2.18)* (1.79) (1.54) 
Spring temp sq -118.1 -170.4  -106.9 
 (5.88)** (2.18)* (2.97)** 
Summer temp -1,803 1,263 -6,200 
 (2.01)* (0.57) (4.75)*** 
Summer temp sq 48.7 17.0 125.9 
 (2.53)* (0.35) (4.03)*** 
Fall temp 119 -5,178 2,678 
 (0.20) (2.55)* (2.54)* 
Fall temp sq -12.1 67.7 -116.1 
 (0.56) (0.93) (2.60)* 
Winter temp 1,226 2,064 911 
 (4.44)** (3.64)** (1.66) 
Winter temp sq 62.6 63.9 67.2 
 (7.34)** (2.91)* (4.87)** 
Spring prec -300.6 -268.3 -132.3 
 (8.52)** (2.84)* (1.50) 
Spring prec sq 1.0574 0.7255 0.6050 
 (8.56)** (2.21)* (1.69) 
Summer prec 5.61 151.1 -76.5 
 (0.39) (3.68)** (2.70)* 
Summer prec sq -0.06078 -0.2414 0.1322 
 (1.55) (2.22)* (1.64) 
Fall prec -107.4 -413.8 -171.6 
 (2.92)* (3.67)** (2.71)* 
Fall prec sq 0.9442 2.3112 1.2763 
 (5.31)** (3.22)** (4.25)** 
Winter prec 554.4 668.9 655.9 
 (8.07)** (3.43)** (5.33)** 
Winter prec sq -6.355 -5.212 -8.248 
 (7.96)** (2.42)* (5.27)** 
Share of clay soil 4,360 201 -109 
 (7.26)** (0.14) (0.08) 
Share of silt soil 2,080 2,865 747 
 (3.85)** (2.68)** (0.79) 
Plain (1=Yes; 0=No) 856 -1,459 1,248 
 (2.57)* (1.96)* (2.11)* 
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Road (1=Yes; 0=No) 2,022 722 3,313 
 (2.96)** (0.55) (3.66)** 
Distance to township government 21.9 83.4 -35.8 
 (0.77) (1.19) (0.93) 
Share of irrigation in village 4.6   
 (1.11)   
If participate production association  1,713 2,940.6 -2,168.4 

(1=Yes; 0=No) (2.50)* (2.57)* (1.27) 
4.901 24.6 -9.3 Share of labor without education 
(0.71) (1.71) (0.90) 

Log of cultivated land area per 
household 

-5,189 -4,942 -3,934 

 (29.46)** (13.72)** (14.53)** 
Elevation -1.956 -0.920 -3.493 
 (4.56)** (1.41) (2.46)* 
Constant 26,242 -4,167 70,431 
 (3.28)** (0.19) (5.22)** 
Observations 8405 2750 2119 
Adjusted R-squared 0.21 0.17 0.26 
F-test 89.23   
 
 
* denotes significant at 5%, ** denotes significant at 1% level 
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Table 4   Marginal impacts of climate on crop net revenue  
 

  All farma Irrigated farmb Rainfed farmc 
Temperature (USD/ha/◦C)     

    
Spring -230* -49 -143** 

    
Summer 76* 286 -15** 

    
Fall -29 -458** -68* 

    
Winter 173** 288** 130 

    
Annual -10* 68* -95* 
Annual Elasticity -0.09* 0.62* -0.88* 

    
Precipitation (USD/ha/mm/mo)     

    
Spring -19** -22** -6 

    
Summer -2 11** -5* 

    
Fall -1 -21** -4* 

    
Winter 36** 59** 38** 

    
Annual 15* 27** 23* 
Annual Elasticity 0.80* 1.48** 1.24* 

 
* denotes significant at 5%, ** denotes significant at 1% level 
Yuan converted to 2006 USD using exchange rate of 8 Yuan/USD.  We wanted to allow easy 
comparison of marginal impacts with studies in other countries.
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Figure 1: Relationship between Crop Net Revenue and Ricardian Net Revenue and Temperature 
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Figure 2: Annual Temperature by Province 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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Figure 3: Annual Precipitation by Province 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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Figure 4: Marginal Temperature Effect, All Farms 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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Figure 5: Marginal Precipitation Effect, All Farms 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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Figure 6: Marginal Temperature Effect, Irrigated Farms 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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Figure 7: Marginal Precipitation Effect, Irrigated Farms 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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Figure 8: Marginal Temperature Effect, Rainfed Farms 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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Figure 9: Marginal Precipitation Effect, Rainfed Farms 

 

Note: Due to World Bank policies some parts of the map have to be covered or removed. 
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ANNEX: CAN CHINA CONTINUE FEEDING ITSELF? 
The Impact of Climate Change on Agriculture 

 
Table A-1 Alternative Ricardian Regressions of All Farms 
 
 With interaction terms Without interaction terms 
 Net crop 

revenue 
Log net crop 

revenue 
Net crop 
revenue 

Log net crop 
revenue 

Spring temp -457.7 -0.2487 609.0 -0.2420 
 (0.63) (5.02)*** -0.92 (5.31)*** 
Spring temp sq -92.0 -0.00612 -113.7 -0.00316 
 (3.94)*** (3.83)*** (5.50)*** (2.23)** 
Summer temp -3,702 -0.2419 -2,121 -0.3572 
 (3.39)*** (3.25)*** (2.38)** (5.84)*** 
Summer temp sq 105.48 0.01057 68.99 0.01219 
 (4.44)*** (6.52)*** (3.47)*** (8.95)*** 
Fall temp 2,403 0.415 719.6 0.4800 
 (2.85)*** (7.21)*** (1.14) (11.07)*** 
Fall temp sq -81.05 -0.01529 -5.69 -0.01911 
 (2.33)** (6.43)*** (0.25) (12.22)*** 
Winter temp 1,593 0.2519 1,194 0.1972 
 (5.23)*** (12.11)*** (4.18)*** (10.07)*** 
Winter temp sq 76.37 0.01072 58.08 0.00996 
 (7.55)*** (15.52)*** (6.49)*** (16.23)*** 
Spring prec -325.27 -0.03730 -304.86 -0.02262 
 (5.78)*** (9.71)*** (8.31)*** (8.99)*** 
Spring prec sq 1.06 0.00010 1.002 0.00009 
 (7.50)*** (10.40)*** (7.79)*** (10.46)*** 
Summer prec -63.78 -0.00126 39.28 0.00460 
 (1.72)* (0.49) (2.93)*** (5.01)*** 
Summer prec sq -0.11 -0.00001 -0.12 -.00001 
 (2.67)*** (2.90)** (3.10)*** (5.26)*** 
Fall prec 20.28 0.00264 -61.53 -0.02041 
 (0.39) (0.74) (1.62) (7.83)*** 
Fall prec sq 1.24 0.00018 0.792 0.00015 
 (5.20)*** (11.13)*** (4.31)*** (11.60)*** 
Winter prec 538.53 0.05703 469.33 0.04787 
 (7.10)*** (11.01)*** (6.56)*** (9.76)*** 
Winter prec sq -6.88 -0.00075 -5.46 -0.00068 
 (7.23)*** (11.55)*** (6.56)*** (11.98)*** 
Spring prec*temp -0.835 0.00062   
 (0.28) (3.01)***   
Summer prec*temp 4.08 0.00014   
 (2.63)*** (1.31)   
Fall prec*temp -8.62 -0.00172   
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 (2.79)*** (8.18)***   
Winter prec*temp 15.93 -0.00023   
 (2.44)** (0.51)   
Share of land areas with clay 
soil 5,477 0.556 5,345 0.423 
 (8.07)*** (12.01)*** (8.55)*** (9.88)*** 
Share of land areas with silt 
soil 3,412 0.300 3,259 0.311 
 (6.02)*** (7.76)*** (5.87)*** (8.18)*** 
Plain (1=Yes; 0=No) 727 0.171 975 0.196 
 (2.06)** (7.11)*** (2.83)*** (8.30)*** 
Road (1=Yes; 0=No) 2,771 0.108 2,584 0.103 
 (3.86)*** (2.21)** (3.64)*** (2.11)** 
Distance to township 
government -32.02 -0.001 -30.89 0.002 
 (1.07) (0.69) (1.04) (1.11) 
Share of irrigated areas in 
village 17.21 0.00362 15.68 0.003 
 (4.01)*** (12.36)*** (3.68)*** (11.82)*** 
If participate production 
association  2,747 0.168 2,601 0.137 
(1=Yes; 0=No) (3.86)*** (3.45)*** (3.67)*** (2.82)*** 

0.364 -0.00073 0.517 -0.001 Share of labor without 
receiving education (0.05) (1.48) (0.07) (1.88)* 
Cultivated land area per 
household -1,992 -0.310 -1,925 -0.303 
 (11.66)*** (26.55)*** (11.35)*** (26.09)*** 
Constant 41,700 10.41 22,465 11.12 
 (4.05)*** (14.81)*** (2.97)*** (21.44)*** 
Observations 8405 8405 8405 8405 
Adjusted R-squared 0.15 0.39 0.15 0.39 
F-test 51.21 189.32 58.47 213.53 
Absolute value of t statistics in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table A-2 Alternative Specifications of Irrigated and Rainfed Farms 
 
 Net crop revenue 
 Irrigated farm Rainfed farm 
Spring temp 6,811 -1,466 
 (2.80)*** (1.37) 
Spring temp sq -324.8 -76.5 
 (3.85)*** (1.84)* 
Summer temp 7,285 -8,742 
 (2.11)** (5.80)*** 
Summer temp sq -119.55 254.25 
 (1.67)* (6.78)*** 
Fall temp -8,845 6,780 
 (3.35)*** (5.19)*** 
Fall temp sq 331.65 -258.73 
 (3.05)*** (4.07)*** 
Winter temp 2,238 1,583 
 (3.04)*** (2.67)*** 
Winter temp sq 51.61 97.91 
 (1.41) (6.55)*** 
Spring prec -294.88 -177.44 
 (2.41)** (1.39) 
Spring prec sq -0.99 0.61 
 (2.47)** (1.44) 
Summer prec 148.14 17.94 
 (1.05) (0.28) 
Summer prec sq -0.158 0.087 
 (1.41) (1.06) 
Fall prec -127.11 102.74 
 (0.73) (1.16) 
Fall prec sq 5.631 3.519 
 (5.12)*** (5.61)*** 
Winter prec 13.25 864.14 
 (0.06) (5.91)*** 
Winter prec sq 6.461 -14.785 
 (2.22)** (7.09)*** 
Spring prec*temp 26.918 -3.269 
 (3.37)*** (0.46) 
Summer prec*temp 0.117 -2.701 
 (0.02) (1.02) 
Fall prec*temp -50.82 -33.10 
 (3.23)*** (4.16)*** 
Winter prec*temp -33.27 82.57 
 (1.90)* (4.84)*** 
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Share of land areas with clay soil -1,934 -1,591 
 (1.29) (1.02) 
Share of land areas with silt soil 4,141 3,746 
 (3.58)*** (3.61)*** 
Plain (1=Yes; 0=No) -463 1,095 
 (0.56) (1.75)* 
Road (1=Yes; 0=No) 564 4,660 
 (0.42) (4.84)*** 
Distance to township government 72.0 -50.7 
 (0.98) (1.26) 

3,138 -2,586 If participate production association  
(1=Yes; 0=No) (2.70)*** (1.46) 
Share of labor without receiving education 32.9 -9.87 
 (2.21)** (0.92) 
Cultivated land area per household -2,720 -1,189 
 (5.78)*** (5.95)*** 
Constant -66240 65,090 
 (2.10)** (4.47)*** 
Observations 2750 2119 
Adjusted R-squared 0.12 0.20 
F-test 14.94 20.25 
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