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Executive Summary

Technology plays an important role in determining how energy is 
produced, delivered, and consumed. In the future, it is expected 
to play an equally important role in enabling society to secure 
its energy system while reducing emissions of greenhouse gases 
(GHGs). But it is unclear what mix of technologies holds the 
greatest promise for simultaneously addressing climate change 
and energy security.

In this paper, the Center for Strategic and International Studies 
(CSIS) and the World Resources Institute (WRI) examine eight 
scenarios for technological development and energy use in the 
United States in 2035. All envision limiting the atmospheric 
concentration of carbon dioxide (CO2) to 450 parts per million 
(ppm). 

Applying an Energy Security Lens
The authors then assess how each scenario affects eleven factors 
closely associated with energy security:

•	 diversity of energy sources;
•	 diversity of suppliers;
•	 import levels;
•	 security of trade flows;
•	 geopolitics and economics;
•	 reliability;
•	 risk of nuclear proliferation; 
•	 market/price volatility;
•	 affordability;
•	 energy intensity (energy used per unit of gross domestic 

product); and
•	 feasibility.

Lessons Learned

This approach, which we think of as envisioning carbon-con-
strained futures through an “Energy Security Lens,” produced 
a number of insights that could inform U.S. policymakers as 
they consider technologies to address energy, climate, and 
economic priorities: 

•	 Regardless of fuel and technology choices, some level of 
energy insecurity is inevitable, especially in the near term, as 
the United States transitions to a low-carbon energy system. 
Policymakers should explore ways to mitigate this insecurity 
during the transition.

•	 Meeting GHG reduction goals will be more costly with only 
today’s technologies than with high penetration of more ad-
vanced low-carbon energy technologies. Policymakers should 
provide the sustained financial and institutional support 
necessary to advance all available low-carbon technologies, 
which can reduce costs and increase energy security over 
the longer term. This will provide the best chance for the 
emergence of a variety of technology options and quicken 
the transition to a secure low-carbon energy system.

•	 Global – not just domestic – deployment of advanced low-
carbon energy technologies can minimize the costs and 
energy security risks of achieving climate change goals. The 
U.S. should support the adoption of advanced low-carbon 
technologies both at home and abroad. 

•	 Common notions of “feasibility” (economic, technical, com-
mercial, political) must be stretched. Policymakers should 
prepare the public to accept higher energy prices while mak-
ing significant investments in low-carbon energy technologies 
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Although these terms are commonly used, they are subjective 
and inherently difficult to evaluate. For instance, it is hard to 
quantify relevant factors, such as geopolitical dynamics, that 
influence this definition. Similarly, it can be difficult to decide 
what a “better” energy security scenario looks like. For example, 
is reliable access to expensive energy more secure than unreli-
able access to cheap energy? The answer depends on a host of 
political, economic, and cultural factors impossible to capture 
in an abstract model.

In other efforts to measure energy security, researchers and 
policymakers have developed an array of analytical approaches 
(see Box 1). While these are useful tools, each is designed for 
a specific purpose and cannot fully account for the complexity 
necessary for evaluating the energy security implications of 
various technology scenarios. 

Various institutions interested in global, regional, or national 
security have devised metrics to measure relative levels of energy 
security. This deep body of work often employs complex mathemat-
ical formulas and a sophisticated understanding of risk analysis, con-
sumer behavior, and social science. These analyses typically focus 
on isolated energy security concerns, like oil import dependence or 
electric reliability, rather than a broader notion of energy security 
that also includes the links between factors. For instance, the Oil 
Security Metrics Model, developed by the Department of Energy’s 
Oak Ridge National Laboratory, measures U.S. oil security in terms 
of monetary metrics (transfer of wealth, economic surplus losses, 
and macroeconomic disruption costs) and non-monetary metrics 
(political risk, strategic risk, and military costs). Another example is 
the Asia Pacific Energy Research Centre’s 4 A’s of energy security –  
availability, accessibility, acceptability, and affordability – and other 
energy security indicators (diversification of energy supply sources, 
net import dependency, non-carbon-based fuel portfolio, net oil 
import dependence, and Middle East import dependence).  

Such models, while useful, are necessarily simplified representa-
tions of energy security and often fail to reflect the complex dynam-
ics affecting the security of the energy system. They emphasize 
the predominant concerns of the day and favor indicators that are 
measurable, instead of those that are equally important but more 
difficult to quantify. This can yield conclusions and recommenda-
tions designed to alleviate one set of concerns without recognizing 
unintended consequences. On the other hand, the more compre-
hensive view proposed in this paper necessarily contains less precise 
metrics, and requires some level of subjectivity and uncertainty 
to evaluate non-measurable metrics and factors in relation to one 
another.

Box 1  Energy Security: Definition and Metrics
and infrastructure. Clearly, such investments are necessary 
to ensure that viable alternatives are available when they are 
needed. However, energy and economic security concerns 
make it equally important that policymakers not take overly 
aggressive action that could jeopardize the existing fuel 
system until these alternatives can be deployed at scale.

•	 A non-carbon-constrained energy future also raises ques-
tions of feasibility and significant energy security concerns. 
A low-carbon future with advanced technology development, 
however, offers significant commercial and energy security 
benefits. 

Introduction

Technology plays a key role in determining how energy is pro-
duced, delivered, and consumed. As a result, climate modelers 
have long considered how technology could be used to limit 
emissions of carbon dioxide and other global warming gases 
produced during energy generation. At the same time, security 
experts have analyzed how energy technologies might make the 
U.S. energy system less vulnerable to disruption. Few research-
ers, however, have considered simultaneously how the energy 
technology mix affects climate change and energy security – or 
the potential tradeoffs. 

In this paper, the Center for Strategic and International Stud-
ies (CSIS) and the World Resources Institute (WRI) propose 
an “Energy Security Lens” as a tool for evaluating relative 
levels of energy security. The authors then examine carbon-
constrained technology scenarios through this lens, with the 
following goals:

•	 To identify technologies that hold the greatest promise for 
reducing greenhouse gas emissions while addressing energy 
security concerns; and

•	 To draw policy lessons for promoting these technologies 
over the long term while managing energy security conflicts 
during the transition.

Defining an Energy Security Lens

CSIS and WRI noted in an earlier publication that it is difficult 
to define “energy security,” and even more challenging to articu-
late meaningful security goals.1 Here, the authors begin with a 
commonly cited definition of energy security as the availability 
of adequate, reliable, and affordable energy supplies.2 
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Table 1  Energy Security Lens: Summary of Key Factors 

Factor
Definition and Relevance  
to Energy Security Increased Security Decreased Security

Metric Used  
in this Analysis

Diversity of  
Energy Sources

Over-reliance on any one fuel, even those 
that are renewable or domestically produced, 
increases the chance of widespread eco-
nomic impact from a shortage or disruption. 

•	Diversified energy mix 
•	Adequate extra supplies in 

case of disruption 
•	Fuel switching capability

•	Significant reliance on any 
one fuel or technology 
(economy-wide or within a 
sector)

•	Dramatic shift in global 
demand for one fuel or 
technology

•	Percent contribution 
to fuel mix

Supplier  
Diversity 

Over-reliance on any one supplier country or 
region can be an energy security risk if sup-
plies from that region are disrupted. 

•	Wide range of suppliers 
and well-supplied market

•	Over-reliance on fuels 
or technologies from any 
one supplier (or group of    
suppliers)

•	Not measured because 
scenarios do not have 
production data. (See 
discussion on p. 9)

Level of  
Imports 

Global trade in energy increases global 
energy security by providing resources for 
which there is no readily available alternative 
domestically. However, to the extent that 
energy imports are beyond the importing 
country’s control, they are regarded as a 
potential source of insecurity. 

•	Majority of total energy 
needs (or any one fuel) 
comes from inside national 
borders

•	Wide range of suppliers 
and well-supplied market

•	Majority of total energy 
needs (or any one fuel) 
comes from outside        
national borders

•	Domestic supply          
constraints

•	Not measured due 
to lack of production 
data. However, level of 
consumption ofnatural 
gas, oil and overall en-
ergy use considered as 
a proxy for discussion

Security of 
Trade Flows 

The security of trading corridorsa is crucial 
to the security of imported energy. Reducing 
the volume of energy moving through these 
points could minimize their risks, as could 
increasing the number of trading corridors or 
improving their protection. 

•	Adequately protected trad-
ing corridors

•	Smaller volumes of energy 
goods traveling through 
choke points or additional 
transit corridors available

•	Unprotected trading     
corridors

•	Larger volumes of energy 
goods traveling through 
choke points

•	Not measured due 
to lack of production 
data. However, level of 
consumption of natural 
gas, oil and overall en-
ergy use considered as 
a proxy for discussion

Geopolitics  
and Economics 

International economic and political factors 
can affect the leverage that producer nations 
have over consumer nations. These factors 
raise questions about how rising economies 
will secure sources of energy, form relation-
ships with supplier countries, and manage 
their domestic energy use. 

•	Open investment and trad-
ing practices

•	Relative political and eco-
nomic stability, security, 
and proper governance in 
energy-producing areas

•	Closed investment in 
energy resources

•	Non-market activity 
governs energy trade and 
development

•	Political instability threat-
ens energy production

•	Not measured here 
(See discussion on p. 
9)

Reliability Aging, neglect, disruptions to physical 
infrastructure, and mismanagement can all 
have adverse impact on energy reliability, 
a fundamental characteristic of a secure 
energy system. 

•	Energy services are avail-
able most of the time 

•	Energy services are 
increasingly subject to dis-
ruption and interruption 
for longer periods of time

•	Not measured here 
(See discussion on p. 
9)

Risk of  
Nuclear  
Proliferation 

Proliferation risk raises more traditional 
security concerns about the safety of wide-
spread deployment of nuclear power and its 
connection to geopolitical leverage.

•	Technologies less prone to 
proliferation

•	Waste management plans 
that reduce proliferation 
risk

•	Increased conventional 
nuclear activity w/ insuffi-
cient proliferation or waste 
disposal plans

•	Level of nuclear gen-
eration.

Market/Price 
Volatility 

Price volatility discourages long-term invest-
ment due to the uncertainty of the long-term 
direction of the market and creates a barrier 
to providing adequate energy supply. 

•	Prices are predictable •	Prices are subject to 
swings and not predictable

•	Not measured here 
(See discussion on p. 
9)

Affordability The relative affordability of energy is a criti-
cal component of energy security. 

•	Energy costs are a small 
share of expenditures 

•	Energy costs are a growing 
and large share of expendi-
tures

•	Aggregate deployment 
and operating costs of 
technology portfolio.

continued next page
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In order to explore a more comprehensive view of energy se-
curity challenges, CSIS and WRI have developed an “Energy 
Security Lens,” which elaborates on the commonly used defini-
tion of energy security as the availability of adequate, reliable 
and affordable supplies to include eleven factors that impact 
energy security (see Table 1; for a more complete discussion, 
see Annex II in online supplement). 

These eleven factors were chosen by the authors as the most rel-
evant among a host of factors commonly cited as either sources 
of concern or avenues for providing greater security.3 The metric 
used by the authors to assess each factor is also listed.

Some of these factors represent direct threats to energy pro-
duction and delivery, while others indicate more indirect stra-
tegic vulnerabilities. Readers may disagree about the relative 
importance of the factors, and these differences will affect the 
conclusions they reach by applying the Energy Security Lens. 
Still, the lens provides a systematic and transparent way of 
thinking about and discussing the energy security implications 
of technology choices.

Applying the Energy Security Lens 
WRI and CSIS applied the Energy Security Lens to eight plau-
sible carbon-constrained technology scenarios. Each scenario 
describes the U.S. energy mix under a carbon constraint in 

2035, with varying levels of advancement in energy technolo-
gies. While the lens can be applied to any country or set of 
circumstances, the analysis presented in this brief focuses on 
U.S. energy security (see Box 2). 

Rather than recreate a complex modeling exercise, the authors 
used existing scenarios produced by the Pacific Northwest 
National Laboratory (PNNL, see Box 3).4 The scenarios reflect 
a range of possible future energy mixes for the United States,5 

all leading to a target atmospheric carbon dioxide (CO2) con-
centration of 450 parts per million (ppm).6 In each scenario, 
some technologies are considered to have achieved “advanced” 
development (i.e., decreased cost and increased performance 
relative to business-as-usual progress), while others are merely 
“reference,” reflecting business-as-usual progress. A brief de-
scription of the scenarios used is provided in Table 2. 

The authors assess the relative performance of each scenario 
in 2035 (see Box 4) by evaluating changes in each of the fac-
tors included in the Energy Security Lens. Detailed results for 
each of these scenarios are presented in Annex III in the online 
supplement. We note, however, that these particular scenarios 
merely illustrate an application of the Energy Security Lens; 
readers should not focus on the precise technology mixes, but 
rather on the lessons learned from applying the lens.

Table 1  (continued) 

Factor
Definition and Relevance  
to Energy Security Increased Security Decreased Security

Metric Used  
in this Analysis

Energy 
Intensityb

Demand reduction accompanied by strong 
levels of economic growth (overall energy 
intensity improvements) would insulate the 
economy from the negative effects of energy 
price fluctuations. 

•	Energy intensity (energy 
consumption relative to 
GDP) of the economy 
decreases 

•	Energy intensity of the 
economy increases (takes 
more energy to produce a 
given unit of GDP)

•	Not measured due 
to lack of production 
data. However, level of 
consumption of natural 
gas, oil and overall 
energy use considered as 
a proxy for discussion. 

Feasibility Technology and energy supply growth 
plans that appear impossible or increasingly 
challenging to achieve call into question the 
ability to provide adequate, reliable energy 
supplies. 

•	Energy technology portfo-
lio appears technologically 
and practically possible 
over commercially relevant 
timeframes

•	Energy technology portfo-
lio appears technologically 
and practically impossible 
over commercially relevant 
timeframes

•	Difference between 
penetration levels shown 
in scenario and fea-
sible penetration levels 
estimated by industry 
assessment. 

Notes

a.		  Global energy markets are dependent upon a small number of fixed transport routes.   According to the Energy Information Administration, 
“In 2007, total world oil production amounted to approximately 85 million barrels per day (bbl/d), and around one-half, or over 43 million 
bbl/d of oil was moved by tankers on fixed maritime routes.” http://www.eia.doe.gov/emeu/cabs/World_Oil_Transit_Chokepoints/Back-
ground.html. 

b.		  Energy intensity is a measure of the energy efficiency of a nation’s economy. It is calculated as units of energy per unit of GDP.
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Lessons from Applying the Energy Security Lens
Table 3 summarizes the performance of each of the technology 
scenarios relative to each other.7 A green box indicates a scenario 
that performed better than the average of the scenarios for that 
factor. Scenarios get a “red light” in categories where they fare 
worse than the other scenarios. Yellow scenarios are close to the 
mean or average for a given factor, and factors with gray boxes 
are not evaluated in this table due to a lack of quantifiable met-
rics. They are discussed subjectively below, and the authors take 
them into account in the overall assessment. While not noted in 
this table, the analysis also shows that a scenario with reference 
technology assumptions but without carbon constraints is not a 
more energy secure outcome than the other scenarios.8 

Diversity of Energy Sources for Power Generation
None of the scenarios shows a significant change in the overall 
diversity of the fuel mix in the electric power sector, although 
diversity does improve slightly in the Energy Efficiency and 
Renewables scenario. This scenario is more diverse primarily 
because 2% of the power sector fuel mix comes from oil and 
28% comes from coal, while in the All Advanced scenario, 29% 
comes from coal, and there is no oil. By the numbers the Energy 
Efficiency and Renewables scenario is more diverse because of 
the contribution of another fuel source (oil) and the “reduced 

Addressing energy security and climate change requires participa-
tion from and cooperation with many other countries outside the 
United States.  

Nearly all factors in the energy security lens deal directly with the 
actions among and between several nations. U.S. energy secu-
rity will always be linked with the security and actions of other 
countries, so long as energy resources – as well as the materials to 
produce, convert, deliver, and use those resources – are bought and 
sold on a global market or traded among countries.

Global cooperation is also necessary to address climate change 
goals. The model presented in this paper assumes that the United 
States is operating in concert with the rest of the world. Additional 
scenario runs (not presented here) that constrain or delay action by 
one or more countries outside the United States show that a lack 
of coordinated action drives up the overall cost of mitigation and, 
under certain scenarios, makes it impossible to meet stabilization 
goals. These results indicate that a coordinated global response is 
critical to managing energy security and reaching GHG reduction 
goals. 

Box 2 U .S. and the World

This analysis applies the energy security lens to a model and set of 
scenarios developed by the Pacific Northwest National Laboratory 
(PNNL) and used by the U.S. Department of Energy’s Climate 
Change Technology Program (CCTP) to inform federal investments 
in energy technology research and development. PNNL has devel-
oped long-term assessments of advanced technology scenarios using 
MiniCAM, an integrated assessment model. The model provides 
information on the future global and regional energy mix through 
2100 based on various carbon constraints (450-750 parts per million 
atmospheric CO2 concentration) and baskets of technology assump-
tions. The assumptions for each scenario specify which technologies 
develop along reference (or business-as-usual) paths, and which 
reach advanced stages, presumably aided by research, development, 
and deployment policies. Those in advanced stages have better 
performance and are less costly, and therefore contribute in larger 
measure to greenhouse gas abatement efforts.  

[Note: The scenarios presented in this brief represent a pre-publication 
version of PNNL’s latest scenarios publication. Therefore the scenarios 
used in this document and the PNNL document are different. The 
PNNL report can be found at: http://www.pnl.gov/atmospheric/publica-
tions/]

Box 3 PNN L/CTTP Model

Table 2   PNNL Technology Scenarios Evaluated 
(450 ppm CO2 Constraint)
Technology 
Scenarios Assumptions

Constrained         
Reference Case 

“Reference” assumptions for all technolo-
gies (i.e., normal technological progress 
and no carbon capture and storage 
[CCS])

Energy Efficiency 
and Renewables 
Case

Advanced technology assumption for ef-
ficiency, renewables, and biomass; refer-
ence nuclear power and no CCS

Energy Efficiency 
Case

Advanced efficiency, no CCS, all else 
reference case

CCS Case Advanced CCS, reference case nuclear 
power, and other technologies

Nuclear Case Advanced nuclear power, no CCS, refer-
ence case for other technologies

Biomass and CCS 
Case

Advanced biomass and CCS, reference 
case for other technologies

Advanced Supply Reference end-use technologies; all else 
advanced 

All Advanced Available CCS and advanced assumptions 
for all technologies
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                     Summary of Lessons from Applying the Energy Security Lens: 2035

Technology Scenarios

Energy Security Factors

Diversity  
of Fuels  

(power gen)

Diversity 
of Fuels 

(transport) Feasibility Proliferation Affordability
Total Energy 

Demand
Total Oil 

Consumption
Total NG 

Consumption
Price 

Volatility Reliability Geopolitics

Constrained Reference Case
Without advanced technology, meeting the carbon constraint 
yields undesirable energy security outcomes.

Energy Efficiency and Renewables Case
Low-cost efficiency and renewables enable climate mitigation, 
while generally improving energy security.

Energy Efficiency Case
Taking advantage of advanced efficiency opportunities yields 
important energy security benefits.

CCS Case
A single technology advancement (advanced CCS) provides sig-
nificant cost-improvements over the reference case scenario, but 
increases vulnerability to supply-related security issues.

Nuclear Case
Availability of advanced nuclear technologies but not CCS yields a 
power sector mix much like the 450 ppm reference case scenario.

Biomass and CCS Case
Even with advanced biomass, significant changes in energy mix 
are not seen.

Advanced Supply
Advancing supply technologies but not efficiency raises more en-
ergy security concerns the scenario in which both are advanced.

All Advanced
Availability of advanced technology facilitates managing energy 
security, while meeting a climate constraint.

Note: See Annex I for Lens Table Methodology.�

Table 3

reliance” on coal. However, few analysts would consider reli-
ance on oil (generally imported and expensive) instead of coal 
(domestic and inexpensive) to provide greater energy security. 
This example illustrates the importance of considering the 
energy security lens factors in concert, rather than focusing in 
on any one component. 

Two scenarios show a significant shift from coal to nuclear power, 
but this change does not improve overall diversity, as the power 
sector is still dominated by a single fuel, nuclear instead of 
coal. These results are partly due to the limited timeframe for 
analysis; 25 to 30 years is not much time to realize technology 
improvements or make major adjustments to the nation’s energy 
infrastructure. (Over a longer period to 2050, fuel diversity does 
improve dramatically in some scenarios.) Given that none of the 
scenarios dramatically improves energy diversity over the next 

few decades, it will be important to manage the specific security 
vulnerabilities of the technologies and fuels that are part of the 
mix, whether they are natural gas imports, nuclear proliferation, 
or the reliability and intermittency of renewables. 

Diversity of Energy Sources for Transportation
None of the scenarios shows a substantial reduction of oil use 
in the transportation sector – oil contributes at least 76 percent 
of the sector’s 2035 fuel mix in all scenarios, compared to 95 
percent in 20089– but the All Advanced, and Energy Efficiency, 
Energy Efficiency and Renewables cases offer the greatest rela-
tive level of fuel diversity.10 In addition, there is little deploy-
ment of biofuels for transport in any of these scenarios (even 
the Biomass/CCS scenario), largely due to the increased GHG 
emissions from land-use changes that result from large-scale 
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                     Summary of Lessons from Applying the Energy Security Lens: 2035
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Energy Security Factors
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Diversity 
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(transport) Feasibility Proliferation Affordability
Total Energy 

Demand
Total Oil 

Consumption
Total NG 

Consumption
Price 

Volatility Reliability Geopolitics

Constrained Reference Case
Without advanced technology, meeting the carbon constraint 
yields undesirable energy security outcomes.
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important energy security benefits.

CCS Case
A single technology advancement (advanced CCS) provides sig-
nificant cost-improvements over the reference case scenario, but 
increases vulnerability to supply-related security issues.

Nuclear Case
Availability of advanced nuclear technologies but not CCS yields a 
power sector mix much like the 450 ppm reference case scenario.

Biomass and CCS Case
Even with advanced biomass, significant changes in energy mix 
are not seen.

Advanced Supply
Advancing supply technologies but not efficiency raises more en-
ergy security concerns the scenario in which both are advanced.

All Advanced
Availability of advanced technology facilitates managing energy 
security, while meeting a climate constraint.

Note: See Annex I for Lens Table Methodology.�

performs better than other scenarios 
performs about the same as other scenarios 
performs worse than other scenarios

not quantifiable

biofuels production. (Scenarios with less aggressive carbon 
constraints do show increased use of biofuels.) None of the 
scenarios used in this exercise modeled a significant advance 
in batteries for on-board storage in plug-in hybrid vehicles or 
any other technology advances that could enable a significant 
shift to electricity for mobility. 

The lack of significant changes in the liquid fuel mix reflects 
the fact that it is generally cheaper to reduce emissions from 
power generation than from transport,11 and the model seeks the 
lowest-cost reductions. However, to the extent that policymakers 
see oil dependence as a key energy security concern, they may 
wish to implement policies to move the transportation sector 
away from oil more aggressively. This issue is explored more 
fully in Box 6 and will be addressed in a subsequent publication 
by the authors. 

Feasibility 
Feasibility is an evaluation of the likelihood of (or ability to 
achieve) the technology deployment levels indicated in the 
scenarios. In this analysis, feasibility is measured relative to an 
industry-informed assessment by the Electric Power Research 
Institute (EPRI) of maximum deployment potential.12 To put 
these assessments in context, even a scenario without any GHG 
constraints pushes the limits of industry’s assessment of feasibil-
ity in some categories (see Box 5). This indicates that aggressive 
development of energy technologies will be necessary regardless 
of climate policy.

When compared with EPRI’s assessment, all of the scenarios 
raise serious concerns about the feasibility of aggressively 
deploying advanced technologies other than coal and nuclear 
power. All of the scenarios show less coal (including coal with 
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CCS), more natural gas, more hydropower, and more non-hydro 
renewables than EPRI’s assessment indicates is possible with 
aggressive development. Of the scenarios only the Nuclear 
case exceeds EPRI’s predictions for nuclear power deployment 
between now and 2030.13 In several cases, the scenarios show 
twice the level of non-hydro renewable capacity considered 
possible by industry. Additional feasibility considerations for a 
variety of technologies are difficult to represent in these models, 
such as the ease of grid integration and competition for water 
and land use. 

Nuclear Proliferation Risk
The risk of proliferation of nuclear materials is linked to the 
overall level of nuclear energy use, rather than percentage of 
energy mix. Nuclear power production increases substantially 
in all scenarios (and most dramatically in the advanced Nuclear 
case). This suggests a need to address the potential security 
implications of increased nuclear power in any low-carbon 
future energy system.

Affordability
The cost of deploying each of the scenarios varies widely, from 
$500 billion to $1.2 trillion in 2035 (see Annex IV in the online 
supplement).14 The most affordable scenario is one in which 
aggressive technology improvements occur across the board, 
including renewables, energy efficiency, CCS, and nuclear 
power (All Advanced). The least affordable scenario is the one 
in which CCS is not developed, nuclear power is held at today’s 

levels, and only reference improvements take place for other 
technologies (Constrained Reference). 

These results are largely a function of the model’s assumptions, 
as technological advancements are generally defined as reduc-
tions in price. Still, the finding reinforces the message that 
investing in a wide variety of technological advancements today 
has the potential to yield significant cost savings over the longer 
term. In addition, these mitigation costs must be considered 
in the context of the cost of inaction on climate change, which 
by some estimates could be at least 5% and perhaps as high as 
20% of global GDP.15

Energy Intensity 
Since reliance on any fuel comes with security risks, lowering 
overall energy demand is a strategic advantage. Energy demand, 
however, should be decoupled from economic growth (see Box 
4). Energy intensity (energy use per GDP) is therefore a more 
meaningful metric than demand, but in the absence of GDP 
projections for this analysis, the authors have assessed total 
demand as a proxy for energy intensity.

For the purpose of this brief, energy security is assessed in each 
scenario for the year 2035. From a technology deployment stand-
point, this is a short time horizon, as it will take much longer for 
many of the truly transformative technology improvements and 
infrastructure changes to take place. The authors do not attempt to 
assess the later stages of each scenario — although many of them 
show much greater change across many of the energy security fac-
tors in later years — as energy security concerns tend to be based 
on nearer-term dynamics, and anything beyond 2035 is too far in 
the future to evaluate energy security. The time lag for a substantial 
technology shift emphasizes the importance of managing the transi-
tion to a low-carbon energy future. During politically and com-
mercially relevant timeframes (out to 2035), policymakers will have 
to manage the energy security concerns of an energy mix that looks 
much like the current one.

Box 4  A Question of Timing: Why 2035?

Recent energy market trends suggest that the world is on an 
unsustainable and undesirable trajectory. These trends include: 
tight supplies and the elimination of excess capacity, persistent and 
growing demand, infrastructure and capabilities limitations, height-
ened geopolitical and investment risks, higher prices, and growing 
concern over climate change. At the same time, absent a major 
strategic shift in policy, U.S. influence in global energy markets will 
continue to erode due to the emergence of new global players. The 
global financial crisis has disrupted the high price and accelerated 
demand trends of the last several years, providing temporary relief 
to consumers, but the underlying unsustainable trends are likely to 
prevail over the long run.a 

PNNL’s unconstrained (without a carbon constraint) business-as-
usual scenario (see Annex III in the online supplement) shows a 
world with greater reliance on the same composition of fuels cur-
rently used today but on a much broader scale, and a continuation 
of current GHG emission trends. This scenario raises the same fea-
sibility concerns as the advanced technology scenarios that reduce 
GHG emissions while also adding generation capacity, but with 
greater energy security concerns and without addressing climate 
change. Business as usual, therefore, is not a solution to either the 
energy security or climate change challenge.

a International Energy Agency, 2008. World Energy Outlook.

Box 5 T he Infeasibility of the Business-as-Usual 
Forecast
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The CCS scenario shows greater energy demand than the oth-
ers due to several factors. These include the additional energy 
consumed in CO2 capture, the exclusion of advanced efficiency 
technologies from the scenario, and the lack of price-driven 
demand reduction due to the relative inexpensiveness of CCS 
in this scenario. The Advanced Supply case (reflecting advance-
ments in everything but end-use technologies) also indicates a 
high overall energy demand relative to the scenario in which all 
technologies are advanced. Some effect of either a carbon price 
or efficiency improvements can be seen across the board: oil 
consumption in transportation is reduced by a range of .04–1.3 
million barrels per day (4–11 percent of the unconstrained 
projection) in 2035 in all scenarios. 

The following factors are important aspects of the lens, but were 
not quantifiable with the data available:

Supplier Diversity, Level of Imports, and Trade Flows
It is difficult to determine how the scenarios would affect levels 
of fuel supply imports, supply sources, and trade flows. This is 
because the model only indicates how much supply is available 
globally, not where it comes from. The scenarios do, however, 
provide insights into the demand for globally traded fuels like 
oil, natural gas, and coal. All of the scenarios show a slight re-
duction in global oil demand relative to projections without a 
carbon constraint (5–21% reduction). Likewise, the scenarios 
show reduced natural gas demand (9–19% reduction) and coal 
demand (47–67% reduction), compared to an unconstrained 
scenario. Given the global market for oil and the increasingly 
connected market for gas, a reduction in overall global demand 
would improve security of supply for all consumers, including 
those in the United States. 

Market/Price Volatility
Price volatility, which has been increasing in world oil markets 
over the last year, creates uncertainty that discourages invest-
ment. In some ways, participating in global commodity markets, 
such as the oil market, makes countries more vulnerable to the 
effects of volatility; however, the security advantages afforded 
by a global and well-functioning market have historically out-
weighed this risk. Policymakers and companies continually look 
for ways to reduce market volatility by providing adequate supply, 
and promoting free market principles and greater transparency. 
Unfortunately, long-term models, such as the one explored in 
this paper, cannot capture the smaller time scale (days, weeks, or 
months) over which volatility can be especially problematic.

Reliability
Reliable energy systems have the ability to provide consistent 
energy supply to meet demand. Reliability is typically reflected 
in terms of outages or interruptions over a period of time, con-
ditions not provided in these scenarios. All scenarios require 
significant infrastructure changes to integrate new technologies 
into the energy mix, and to ensure that energy is available to 
meet demand. The Energy Efficiency and Renewables case may 
be particularly challenging, given that the diffuse and intermit-
tent nature of renewable generation is problematic for grid 
stability in the absence of energy storage solutions.

Advancements in infrastructure technologies will improve the 
reliability of each of the scenarios and will support a move to 
more diverse energy supplies. However, new generations of 
transmission and distribution (“smart grid”) technologies will 
raise new concerns about digital security and data protection, 
much like the security issues associated with the Internet.16

Geopolitics
The geopolitical dynamics of energy revolve around the coun-
tries that control energy resources, the countries that need those 
resources, and the countries through which energy distribution 
infrastructure passes. It is difficult, given various energy mixes, 
to identify what leverage producer nations will have over con-
sumer nations, and what relative gains in economic strength 
mean in political terms.  Each scenario examined could be 
affected by geopolitical factors. This is because all scenarios 
continue to show a significant role for oil, which is thought 
of as the key political vulnerability for the United States. The 
scenarios also indicate a significant role for natural gas, a fuel 
with the potential to raise the same global trade concerns as 
oil. Moreover, the reality of a global marketplace is that most of 
the materials used to build the technologies modeled in these 
scenarios come from outside the United States, exposing the 
U.S. to some degree of global geopolitical concern regardless 
of the energy technologies chosen.17 

Relative Performance of Scenarios 
The most promising scenario from the perspective of energy 
security (i.e., with the most green areas in Table 3) is the Energy 
Efficiency and Renewables scenario. Other standouts include 
the All Advanced and the Energy Efficiency cases. It is important 
to note that the Energy Efficiency and Renewables scenario 
outperforms the All Advanced and the Energy Efficiency sce-
narios primarily because it leads on diversity of fuels for power 
generation. As discussed on page 5, this greater diversity is 
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due to the presence of oil in the power sector fuel mix, which 
does not improve energy security. The Energy Efficiency and 
Renewables scenario also raises concerns about the reliability 
and stability of the electricity grid (described above) that are 
not quantifiable in this analysis.

All three leading scenarios reduce oil dependence in the 
transportation sector, a key geopolitical concern, in ways the 
others do not. The All Advanced scenario is among the best at 
providing diversity in the transportation sector and reducing oil 
consumption. It may not be surprising that the All Advanced 
scenario – with significant technological advancements and cost 
reductions in the greatest number of different technologies – is 
also the least expensive overall. However, this scenario reflects 
progress on multiple technologies (e.g., wind, solar, geothermal, 
and a suite of energy efficiency technologies, including appli-
ances and building materials, etc), so it is perhaps not analogous 
to scenarios that move a single technology applications, like CCS 
or nuclear power, to an advanced stage. 

Of the scenarios that rely on advancements in single technolo-
gies, the Nuclear scenario fares very poorly while the CCS sce-
nario fares much better, indicating that much can be gained for 
energy security (as well as cost savings) by pursuing CCS tech-
nology. The Constrained Reference case also performs poorly, 
demonstrating that technology advancements can improve 
energy security in ways beyond simply reducing costs.

Findings and Conclusions

Viewing carbon-constrained technology scenarios through the 
Energy Security Lens reveals several themes relevant for poli-
cymakers. These themes, along with recommendations for those 
seeking to address climate change and energy security in U.S. 
policy, are outlined below. In addition, the analysis identifies 
two topics that merit further exploration: the emerging role of 
natural gas as a near-term lower-carbon alternative to coal and 
the role of oil in the transportation sector (see Box 6). These 
topics are considered in more detail in separate publications.

•	 The Inevitable Energy Security Challenges

	 Just as some level of climate change is unavoidable, so 
is some level of energy insecurity, especially in the near 
term. Policymakers should explore ways to mitigate these 
security impacts during the transition to a secure, low-
carbon future.

	

Many of the PNNL technology scenarios, as viewed through our 
Energy Security Lens, have the potential to improve U.S. energy 
security. However, no one scenario completely removes the con-
tinued need to manage various energy security concerns. Even 
the All Advanced scenario leaves the United States vulnerable 
to some of the same energy security concerns we have today.

•	 The Importance of Advancing Clean Energy 
Technology

	T echnology advancements are necessary for meeting 
GHG reduction goals, while providing adequate, afford-
able and reliable energy supplies. Policymakers should 
provide the financial and institutional support needed to 
reach the “advanced” stage of all available low-carbon 
energy technologies, particularly renewable energy and 
energy efficiency technologies.

	 The world must develop and deploy a variety of energy tech-
nologies if it is to stabilize atmospheric GHG concentrations 
and provide adequate supplies of affordable and reliable 
energy. The needed technology advancements and cost 
reductions will not be achieved without adequate support. 
Implementing a price on carbon will create an incentive to 
expand all low-carbon technologies. Policymakers must also 
eliminate non-financial barriers to each of the technologies 
in the scenarios. Given that the All Advanced technology 
scenario yields several positive outcomes for GHG mitigation 
and energy security, policymakers should do all they can to ad-
dress challenges facing each of the following technologies: 

	 Carbon Capture and Storage

	 The scenarios show that employing CCS will allow the use of 
coal, gas, and oil much longer into the future, dramatically re-
ducing the overall cost of GHG emissions abatement relative 
to the other scenarios. The ultimate level of CCS deployment 
is much higher in the absence of other technology improve-
ments, such as nuclear, greater efficiency, and renewables. 
However, expectations for CCS are high: in the CCS case, 
CO2 storage must ramp up twice as fast between 2020 and 
2035 as in the All Advanced case. A multi-stakeholder process 
led by WRI18 recently published guidelines for U.S. support 
of CCS.

	 Renewable Energy

	 Policies to push renewable energy (e.g., a renewable portfolio 
standard for power generation) can encourage greater fuel 
diversity on a shorter time frame than is predicted by current 
models, as well as provide other energy security benefits. 
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However, widespread deployment of renewable power will 
also require greater access to the electricity grid, improve-
ments to the grid itself, and large-scale energy storage to 
address intermittency.19 Investment in and incentives for 
these upgrades will be as important as support for renewable 
energy technologies themselves.

	

	 Energy Efficiency

	 Reduced overall energy consumption benefits consumers 
and significantly improves energy security over a scenario 
in which only supply-side technologies are encouraged. Ad-
vanced efficiency improvements for transport are particularly 
effective for improving energy security by reducing reliance 
on oil. Energy efficiency and demand-side management are 
available today and should be promoted aggressively.

Two subjects for further research emerged from the application of 
the security lens: the role of natural gas and the future of the trans-
portation sector. The authors draw preliminary observations below, 
but plan to conduct further research to explore these issues in greater 
detail, because of their critical importance to both energy security 
and climate change.

Natural gas is a valuable short-term emission reduction strategy, 
but not a long-term solution to climate change or energy security 
concerns.

It is possible that natural gas will become the near-term fuel of 
choice for power generation under a carbon-constrained economy. 
The U.S. Department of Energy’s Energy Information Adminis-
tration (EIA) analyzed several scenarios for compliance with the 
Climate Security Act of 2007 proposed by Senators Lieberman and 
Warner. The EIA analysis indicated that under the emissions cap 
proscribed, natural gas consumption could increase greatly if other 
low-carbon compliance technologies are limited to their current 
rates of deployment.a 

However, the PNNL scenarios indicate that in order to achieve an ag-
gressive stabilization target, natural gas will need to be almost entirely 
removed (or have its emissions sequestered) from the energy mix in 
the long term. In addition, a reliance on natural gas raises some of the 
same energy security concerns (e.g., limited supply, high prices, and 
dependence on a small number of suppliers) as oil. Unconventional 
gas resources are being heralded as an abundant future supply of gas 
that will alleviate gas competition concerns, but their GHG emissions 
implications are unclear.b It is also not clear that industry is poised 
to develop natural gas resources or able to dispatch natural gas-fire 
power plants at the scale or pace indicated in some near-term energy 
mix scenarios.c

The authors’ additional research explores whether significant shifts to 
natural gas in the near-term could complicate efforts to achieve long-
term climate and energy security goals. 

Even significant efforts to reduce GHG emissions may not shift the 
transportation sector significantly from its reliance on oil.

Oil dependence is a major U.S. and global energy security issue today, 
due to the over-reliance on oil for transportation use and the concen-
tration of conventional oil supplies in a handful of regions. The PNNL 
modeling exercise indicates that a fundamental move away from oil 
may not be necessary to achieve climate goals if substantial emission 
reductions can be cost-effectively achieved through the electric power 
sector. In fact, the role of higher-carbon unconventional oil grows in 
some of the carbon-constrained scenarios. Oil’s share in overall energy 
use decreases in each scenario, but the transportation sector remains 
reliant on oil for about 75–80 percent of its energy needs. 

This raises the question of how much climate policy will improve en-
ergy security in the transportation sector, since a least-marginal-cost 
approach to climate mitigation does not address one of the key politi-
cal concerns regarding energy security: oil dependence. Reduced 
reliance on oil as a fuel source may actually have some of the most 
synergistic benefits for both energy security and climate change by 
both reducing reliance on imported oil and reducing emissions. 

The authors’ further work explores arguments for and against trans-
forming the transportation sector and explores potential advantages 
of linking transportation to the electricity generation system through 
technologies such as plug-in hybrid electric vehicles. 

Notes
	 a.	 U.S. Department of Energy, Energy Information Administration, 

Energy Market and Economic Impacts of S. 2191, the Lieberman-
Warner Climate Security Act of 2007 (Washington, DC: DOE, 
2008). Available at http://www.eia.doe.gov/oiaf/servicerpt/s2191/
index.html. Accessed August 12, 2008.

	 b.	 See, for instance, U.S. Department of Energy research on meth-
ane hydrates, highlighted in the National Energy Technology 
Laboratory’s methane hydrate newsletter Fire in the Ice, available 
online at http://www.netl.doe.gov/technologies/oil-gas/FutureSup-
ply/MethaneHydrates/newsletter/newsletter.htm.  

	 c.	 North American Electric Reliability Corporation, Special Report: 
Electric industry Concerns on the Reliability Impacts of the Cli-
mate Change Initiatives (November 2008) and Victor Niemeyer, 
“Climate Policy: The Cost of Compliance,” EPRI Winter Journal 
2008, Electric Power Research Institute (2008).

Box 6 T he Natural Gas Bridge and the Role of Oil in Transport
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	 Nuclear Power

	 While the scenario showing only nuclear power in the ad-
vanced stage raised numerous energy security concerns, 
nuclear energy plays a large role in all of the emission-
constrained technology scenarios. Current obstacles to 
widespread nuclear deployment include difficulties ensuring 
the security of nuclear facilities, lack of a long-term solution 
for waste management, the need for long-term risk protec-
tion against liability, the cost and shortages of materials and 
labor, and nuclear proliferation concerns. 

	 A resurgence of interest in civilian nuclear power and 
perceived shortcomings of the international Nuclear Non-
Proliferation Treaty raise significant concerns about how to 
safeguard against the spread of nuclear arms, nuclear-weapon 
usable material, and fuel-cycle facilities in these future sce-
narios. The non-proliferation community recognizes that 
many factors influence proliferation, including the techni-
cal difficulty of fissile material extraction, cost, time, fissile 
material type, potential for safeguarding and detection of 
tampering, and physical protection.20 These serious issues 
must be addressed in the near term if the United States is 
to participate in a nuclear renaissance. 

	 Research, Development, and Demonstration Funding

	 Federal funding on research, development, and demonstra-
tion (RD&D) can compensate for the disincentive private 
firms face in conducting basic research or demonstration 
(namely the difficulty of capturing all the benefits from their 
investments).21 RD&D efforts have suffered from inconsis-
tent and insufficient levels of funding. In the past, different 
administrations and legislators have shown preferences for 
different technologies, causing budgets to rise and fall accord-
ing to changing priorities. Successful technology development 
requires a stable and sustained commitment to funding over 
many decades. RD&D investment decisions are also plagued 
by disagreement on approach and process. A system that 
increased the stability of funding and institutional research 
processes could achieve the technology advancements envi-
sioned in these scenarios much more successfully

•	 The Need for Global Action 

	 Aggressive global action will be necessary, and mul-
tilateral  collaboration on technology deployment  will 
be critical, to achieving mitigation targets while keeping 
costs down and providing greater security. 

	 The PNNL scenarios and many other modeling exercises 
illustrate that globally coordinated action is the least-cost 
pathway to GHG emission reductions.22 U.S. technology de-
velopment and deployment alone cannot achieve the global 
emission reductions needed, nor can it provide the lowest-cost 
reductions.23 The Energy Security Lens suggests that globally 
coordinated action and cooperation are also essential for main-
taining adequate levels of energy security, because domestic 
security sometimes relies explicitly on the actions of other 
countries. Moreover, key developing countries share many 
of the same energy security concerns, and are eager to find 
solutions that target both energy security and GHG emission 
reduction goals. Therefore, the United States should pursue 
both domestic and international policies that support the 
deployment of advanced technologies throughout the world. 

•	 Re-visiting Current Perceptions of Feasibility

	 Addressing energy security and climate challenges re-
quires strong political will. Policymakers and industry must 
revisit their notions of “feasibility,” while pushing for the 
most efficient and effective GHG reductions possible. 

	 In many ways, feasibility and cost issues are at the heart of 
the tensions between the energy security and climate change 
communities. Climate stabilization is theoretically feasible 
but will be difficult to achieve, given long capital investment 
and project development cycles, a shortage of materials and 
skilled personnel, and escalating costs of projects. These 
challenges call into question the pace, scale, and cost of 
the changes that models indicate will be necessary to reach 
stabilization. If policies push too hard, and the technology 
advancements on which they are relying do not materialize in 
the desired time frame, energy shortages, high energy costs, 
and decreased political support for emissions mitigation may 
result. If policies are not stringent enough, the market will 
find quick fixes (like fuel switching) which will be inadequate 
for achieving long-term climate goals. 

	 However, the same investment and project development 
challenges constrain our ability to meet the needed increases 
in energy supply even without attempts to reduce GHG 
emissions, a path that introduces the dramatic and costly 
consequences of climate change as well. In addition, new 
capital, infrastructure, production, and even new human re-
sources can come online quickly if political will is strong and 
the appropriate market signals, including a cost for carbon 
and other complementary policies, are in place. 
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Viewing future technology scenarios through the Energy Security 
Lens makes it clear that while emission constraints can be met 
with only reference technology advancements, this is not a desir-
able outcome from an energy security or cost perspective. To ad-
dress both climate and energy security simultaneously, the United 
States will need the technologies depicted in the “advanced” 
PNNL scenarios, along with policies to develop and deploy them. 
However, even with substantial technology advancements, there 
will still be energy security concerns to manage, both during and 
after the transition to a low-carbon economy.

Annex 1. L ens Table Methodology for 
Quantifiable Metrics

WRI and CSIS applied the energy security lens to the PNNL/
CCTP model scenarios in order to assess which climate stabiliza-
tion scenarios and therefore which suite(s) of technologies are 
most beneficial from an energy security standpoint. Comparing 
the scenario results to the unconstrained reference baseline 
(BAU), none of the scenarios stood out as particularly differ-
ent. For instance, every scenario was slightly better than BAU 
in terms of transportation fuel diversity, and slightly worse than 
BAU in terms of proliferation risk due to increased nuclear 
consumption over BAU in every scenario. Therefore, instead 
of comparing the scenarios to a baseline, WRI and CSIS ranked 
the scenarios relative to each other, and color-coded the results. 
Scenarios get a “red light” in categories where they are worse 
for energy security than most of the rest of the scenarios or a 
“green light” when they are better. Scenarios get a “yellow light” 
when they are about average, or right in the middle of all of the 
scenarios in the category.

The methodology used to separate the scenarios into red, yel-
low, and green lights is fairly straightforward, using standard 
deviation. Within each lens category, the authors calculated the 
standard deviation for the scenario data points. Any data points 
that fall within one standard deviation of the mean are assigned 
yellow. Any data points that are outside of one standard devia-
tion, above and below, get red and green. 

For example, in the “cost” category, the mean of the scenario 
data points is 0.75. The standard deviation is 0.26. 

Therefore:

For Annex II-IV, please see the online supplement available at 
www.wri.org/climate or www.csis.org/energy.

The authors applied the same methodology for assigning red, 
yellow, green for all of the categories. The metrics used for the 
scenario data points are as follows:

Proliferation: absolute amount of nuclear in the scenarios.

Overall energy consumption, natural gas, and oil consump-
tion: absolute level of energy demand, gas/oil consumption in 
the scenarios.

Feasibility: the authors used EPRI’s PRISM analysis, a bottom-
up review of technology performance capabilities and deploy-
ment potential for comparison against the CCTP/PNNL results. 
The authors calculated the differences between the PNNL num-
bers and EPRI’s numbers, by fuel type: liquids, gas, coal, coal 
w/CCS, nuclear, hydro, and non-hydro renewables. They then 
compared the results within each fuel type, and used the same 
methodology described above to categorize the scenarios. For 
instance, looking at natural gas, the authors calculated the dif-
ference between EPRI’s analysis and each of PNNL’s scenarios, 
subtracting EPRI’s analysis of what is feasible from PNNL’s 
analysis of what is required, in order to estimate the “feasibility 
gap”. Those scenarios with a “feasibility gap” greater than one 
standard deviation from the mean of these feasibility gap data 
points are red: constrained and reference nuclear. Those with a 
gap lower than one standard deviation, only CCS score a green. 
This same methodology was applied across the fuel types.

Diversity of Fuels (both power and transport): the authors 
used the fuel mix data, and calculated the variance of these 
data to estimate the level of fuel diversity. Since variance is a 
measure of dispersion – in other words, the degree to which 
the data points are clustered around the mean – if a fuel mix is 
“diverse” – then the percent contributions from each technology 
will all be close together or clustered around the mean (e.g., 
20% contribution from five different resources is more diverse 
than 90% from one source and 10% from another). Therefore, 
the scenarios with low variance are more diverse. Then using 
the same methodology described above, the authors assigned 
red, yellow, and green to the scenarios, with red being those 
scenarios that have a level of dispersion above one standard 
deviation of the mean level of dispersion.

> (mean+SD) > 1.01 Constrained Ref; Nuclear

(mean-SD) 
<x< 

(mean+SD)
0.49<x<1.01 Energy Efficiency and Renewables; 

EE; Bio/CCS; CCS; Supply; All Adv

<(mean-SD) < 0.49 none
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Notes
	 1.	 S. Ladislaw, K. Zyla, and B. Childs, Managing the Transition to a 

Secure, Low-Carbon Energy Future (Washington, DC: Center for 
Strategic and International Studies and World Resources Institute, 
2008).

	 2.	 Other organizations that have used this or similar definitions for 
energy security include: the International Energy Agency, the Eu-
ropean Commission, the Energy and Natural Resources Committee 
of the United States Senate, along with many others.

	 3.	 Many other energy security studies either focus on one or more 
of these factors or choose to divide factors into categories. For 
additional reading about energy security definitions and factors 
see: Energy Security and Climate Policy – Assessing Interactions, 
OECD/IEA 2007; Samantha Olz, Ralph Sims, and Nikolai Kirch-
ner, Contribution of Renewables to Energy Security, International 
Energy Agency Information Paper, OECD/IEA 2007 http://www.
iea.org/textbase/papers/2007/so_contribution.pdf ; Greene, David 
L. and Leiby, Paul N., The Oil Security Metrics Model: A Tool for 
Evaluating the Prospective Oil Security Benefits of DOE’s Energy 
Efficiency and Renewable Energy R&D Programs,  Oak Ridge 
National Laboratory, May 2006; A Quest for Energy Security in the 
21st Century, Asia Pacific Energy Research Centre, 2007, and The 
Economic of Energy Security, Douglas R. Bohi, Michael A. Toman, 
Margaret A. Walls, Springer Publishing, 1996.
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	 4.	 As with all models, these scenarios are not meant to represent pre-
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The World Resources Institute is an environmental think tank that 
goes beyond research to find practical ways to protect the earth and 
improve people’s lives. Our mission is to move human society to live 
in ways that protect Earth’s environment and its capacity to provide 
for the needs and aspirations of current and future generations.

At a time of new global opportunities and challenges, the Center 
for Strategic and International Studies (CSIS) provides strategic 
insights and policy solutions to decisionmakers in government, 
international institutions, the private sector, and civil society. A 
bipartisan, nonprofit organization headquartered in Washington, 
DC, CSIS conducts research and analysis and develops policy ini-
tiatives that look into the future and anticipate change. Founded 
by David M. Abshire and Admiral Arleigh Burke at the height of 
the Cold War, CSIS was dedicated to finding ways for America to 
sustain its prominence and prosperity as a force for good in the 
world. Since 1962, CSIS has grown to become one of the world’s 
preeminent international policy institutions, with more than 220 
full-time staff and a large network of affiliated scholars focused 
on defense and security, regional stability, and transnational chal-
lenges ranging from energy and climate to global development and 
economic integration.


