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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper develops a Structural Ricardian model to 
measure climate change impacts that explicitly models 
the choice of farm type in African agriculture. This two 
stage model first estimates the type of farm chosen and 
then the conditional incomes of each farm type after 
removing selection biases. The results indicate that 
increases in temperature encourage farmers to adopt 
mixed farming and avoid specialized farms such as crop-
only or livestock-only farms. Increases in precipitation 
encourage farmers to shift from irrigated to rainfed crops.  

This paper—a product of the Sustainable Rural and Urban Development Team, Development Research Group—is part 
of a larger effort in the department to mainstream research on climate change. Policy Research Working Papers are also 
posted on the Web at http://econ.worldbank.org. The authors may be contacted at Niggol.seo@yale.edu and Robert.
mendelsohn@yale.edu.

As temperatures increase, farm incomes from crop-only 
farms or livestock-only farms fall whereas incomes from 
mixed farms increase. With precipitation increases, farm 
incomes from irrigated farms fall whereas incomes from 
rainfed farms increase. Naturally, the Structural Ricardian 
model predicts much smaller impacts than a model that 
holds farm type fixed. With a hot dry climate scenario, 
the Structural Ricardian model predicts that farm income 
will fall 50 percent but the fixed farm type model predicts 
farm incomes will fall 75 percent.  
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1. Introduction 

This paper develops a Structural Ricardian model to measure climate change impacts on 

agriculture that explicitly captures adaptation decisions by farmers (Seo and Mendelsohn 

2007). Many recent studies of climate change impacts on agriculture have failed to fully 

include adaptations (Rosenzweig and Parry 1994, Schlenker et al. 2005, Deschenes and 

Greenstone 2007). By failing to properly capture adaptations, these studies overstate the 

actual damages that will occur with climate change. However, one of the most important 

insights of microeconomics is that economic agents will adapt to changing conditions.  

The Structural Ricardian model explicitly models the adaptive behaviors of farmers in 

measuring the impacts of climate change on agriculture.  

The traditional Ricardian model (Mendelsohn, Nordhaus and Shaw 1994) captures 

adaptation in its measurement of impacts, but the adaptations are a black box, never 

explicitly measured or identified.  In contrast, the Structural Ricardian model explicitly 

identifies adaptation measures and quantifies their influence on impacts.  Several 

versions of the Structural Ricardian model have been explored that examine irrigation, 

crop species choice, and livestock species choice (Kurukulasuriya and Mendelsohn 2007; 

2008; Seo and Mendelsohn 2007). The approach was also applied to South American 

farm types (Mendelsohn and Seo 2007). This paper extends these early efforts to look at 

the choice of farm type in Africa. We examine five possible farm types: crop-only rainfed, 

crop-only irrigated, mixed (both crop and livestock) rainfed, mixed irrigated, and 

livestock-only farms. We rely on a multinomial logit regression to estimate the link 

between farm type choice and climate and other exogenous variables.  We then estimate 

the conditional income from each farm type controlling for selection bias (following 

Heckman 1979 and Dubin and McFadden 1984).  We carefully choose seasonal water 

flow and price variables to identify the choice equation (Ekeland, Heckman, and Nesheim 

2002).   

We apply the Structural Ricardian Model to study African agriculture.  This is an 

important application because many millions of Africans depend on local farms for 

income and African agriculture is expected to be very sensitive to climate change  We 

estimate the model using economic surveys collected through a GEF/World Bank project 
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of over 9,000 farms across ten countries in Africa (Dinar et al. 2008). The results reveal 

that both farm type choice and conditional incomes are sensitive to climate. 

We then use the estimated model to predict the impact of climate change on African 

income. We compare two measures.  In one case we assume farm choice is fixed 

(Schlenker et al 2005) and in the other case, we allow farmers to endogenously adjust 

farm choice to maximize their net revenue.  By comparing the two results, we are able 

to demonstrate that farm type adaptation will significantly reduce the predicted damages 

of climate change in Africa.   

In the following section, we develop the theory behind the structural Ricardian approach.  

The third section is devoted to the description of the data. Empirical results and 

simulation results for 2060 are presented in the fourth and fifth sections. The paper 

concludes with a discussion of results and policy implications.  

2. Theory 

The structural Ricardian model is a micro econometric model in which an agent makes a 

choice from multiple alternatives in the first stage, and maximizes net revenues in the 

second stage conditional on the choices (Seo and Mendelsohn 2007). Farmers choose 

from one of the following farm types: crop-only dryland farm, crop-only irrigated farm, 

mixed (both crops and livestock) rainfed farm, mixed irrigated farm, and livestock-only 

farm. For each farm type, the farmer considers the inputs and outputs that would 

maximize net revenue where net revenue is defined broadly to include own consumption.  

We assume that the farmer then chooses the farm type that maximizes net revenues.   

More formally, each farmer maximizes profit by choosing a farm type j (j=1, …, 5):    

 

111 uX += βπ                            (1) 

jjj Z ηγπ +=* ,    j=1,…, J.                                        (2) 

 

where  and . The subscript j is a categorical variable 0),|( 1 =ZXuE 2
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indicating the choice among J alternatives. The vector Z represents the set of explanatory 

variables for all the alternatives and the vector X contains the determinants of the variable 

of interest. Without loss of generality, the profit for alternative 1 is observed only if it is 

chosen, which happens when 
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The probability  of the first farm type being chosen is 1P
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Assuming jη  is independently and identically Gumbel distributed, the probability that 

the farmer will choose farm type 1 among the 5 farm types is (McFadden 1981): 
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The choice equation is identified using cross prices and seasonal water flows (Brown and 

Rosen 1982, Ekeland, Heckman, and Nesheim 2002).  The parameters are estimated by 

Maximum Likelihood Method using an iterative nonlinear optimization technique.  

Given the choice of the farm type 1, the farmer will choose inputs and outputs to 

maximize the net revenue from the chosen farm type. The maximum profits can be 

estimated as a function of exogenous variables X directly from equation 1 above. 

However, it is likely that the errors in equation 1 and equation 2 are correlated. As profits 
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are only observed for the farms that chose farm type 1, selection bias should be corrected 

to obtain consistent estimates of the parameters (Heckman 1979). Following Dubin and 

McFadden (1984), we assume the following linearity condition: 
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We can the estimate the conditional profit function for farm type 1 as follows: 
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Note that η  in equation 2 and δ  in equation 8 are now independent.  

 

The regressors in the above equation include soils, climate, and socio-economic variables 

such as the provision of electricity. Country dummy variables are also tested to see if 

country specific conditions make a substantial difference. We follow the previous studies 

in specifying the functional form of the equation as a quadratic form.  

The expected value of the farm, W, is the sum of the probabilities of each farm type times 

the conditional land value of that farm type.  That is: 
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Note that this measure does not assume a farm will remain as one type.  The change in 

welfare, ΔW, resulting from a climate change from CA to CB can be measured as follows. 
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This change in welfare captures both changes in the probability a farm will be a particular 

type and the conditional value it would have as that type.    

3. Description of the Data  

The data for this study came from the recently completed GEF/World Bank project in 

Africa (Dinar et al. 2008). The surveys asked questions about both crop cultivation 

activities and livestock management during the farming period from July 2001 to June 

2003. The countries were chosen to reflect a wide range of agro-ecological systems in 

Africa. Niger, Burkina Faso, Senegal, and Ghana were chosen from West Africa; Kenya, 

Ethiopia, and Cameroon from East Africa; South Africa and Zambia from Southern 

Africa; and Egypt from North Africa.  Zimbabwe was also surveyed but the turmoil in 

that country during the survey period forced us to drop the observations. The number of 

surveys varied from country to country (Dinar et al 2008).  

In each country, districts were chosen to get a wide representation of farms across climate 

conditions in that country. In each chosen district, a survey was conducted of randomly 

selected farms. The sampling was clustered in villages to reduce sampling costs. After 

cleaning, over 9000 observations remained.   

Data on climate were gathered from two sources. We relied on temperature data from 

satellites operated by the US Department of Defense (Basist et al. 2001). These polar 

orbiting satellites pass above each location on earth between 6am and 6pm every day. 

These satellites are equipped with sensors that measure surface temperature by detecting 

microwaves that pass through clouds (Weng and Grody 1998). The precipitation data 

come from the Africa Rainfall and Temperature Evaluation System (ARTES) (World 

Bank 2003). This dataset, created by the National Oceanic and Atmospheric Association’s 

Climate Prediction Center, is based on ground station measurements of precipitation.  

Soil data were obtained from FAO (2003). The FAO data provide information about the 

major and minor soils in each location as well as slope and texture. Data concerning the 

hydrology were obtained from the University of Colorado (Strzepek and McCluskey 

2006). Using a hydrological model for Africa, the hydrology team calculated flow 
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through each district in the surveyed countries. Data on elevation at the centroid of each 

district were obtained from the United States Geological Survey (USGS 2004). The 

USGS data are derived from a global digital elevation model with a horizontal grid 

spacing of 30 arc seconds (approximately one kilometer).  

4. Empirical Results 

Africa contains a wide range of agricultural ecological zones across the continent. Due to 

its diverse ecological zones, farmers are expected to rely on different farm types, crops, 

livestock, inputs, and outputs depending upon the characteristics of the farm location.  

Table 1 describes how farmers chose different farm types in the sample. Livestock was 

chosen in about 65 percent of the total farms. Irrigated farms account for about 25 percent 

of farmers. Across the sample, the proportion of each of the five distinct farm types is: 

crop-only rainfed farms (28 percent), crop-only irrigated farms (10 percent), mixed 

rainfed farms (42 percent), mixed irrigated farms (14 percent), and livestock-only farms 

(6 percent).  

We examine whether the choice of these farm types is sensitive to climate. We begin by 

examining a cross section of farmers who face different climate conditions.  We 

hypothesize that farm type choice is influenced by climate. Table 2 shows the results 

from a multinomial logit regression of the five farm types against a set of independent 

variables which include climate variables in quadratic form, soil variables, household 

characteristics, water flow, pasture, and output prices.  The choice of livestock-only is 

omitted as the base case. Several control variables are significant. When the farm has 

electricity, farmers favor livestock-only farms over other choices. This may be because 

electricity is needed for milk production and for storage of livestock products or it may 

be because electricity is correlated with other missing variables that favor livestock. 

When Lithosol soils are dominant in a district, farmers tend to choose mixed rainfed 

farms more often but when Vertisol soils are dominant, farmers choose mixed irrigated 

farms less often. The remaining soil coefficients, however, are not significant in the 

choice of farm type.  West African farmers are more likely to choose crop-only or mixed 

irrigated farms and less likely to choose livestock-only farms. This regional parameter is 

likely picking up the prevalence of livestock diseases in this region. Although other 
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regional dummies were tested, they were not significant.  The overall model is highly 

significant according to the Likelihood Ratio test statistic. 

Farm type choices are identified by the prices of maize and millet, and water flows to a 

district in the spring and in the summer (Brown and Rosen 1982, Ekeland, Heckman, and 

Nesheim 2002). Note that the water flow is not to the farm itself but rather to the district 

in which the farm is located4. When the water flow in spring is high, farmers are more 

likely to irrigate their land. When the summer flow is high, then they are more likely to 

choose rainfed agriculture. Many crops in Africa are planted relatively early in the year 

so that having water available in spring is critical. When the maize price is high, farmers 

tend to avoid mixed irrigated farms. Maize is often grown in rainfed farms in Africa. 

When the millet price is high, farmers choose livestock-only farms more often. If millet is 

hard to raise, the land may be more suitable for livestock.   

The most important result in Table 2 concerns the climate coefficients. The results 

indicate that climate variables play an important role in the choice of farm types. The 

choice of crop-only rainfed farms is sensitive to summer temperature and winter 

precipitation while that of mixed rainfed farms is sensitive to summer temperature, 

summer precipitation, and winter precipitation. The choice of crop-only irrigated farms is 

sensitive to all climate variables whereas mixed rainfed farms are sensitive to every 

climate variable except winter temperature.  

Because it is difficult to interpret the quadratic coefficients, we calculate the marginal 

change in the choice of each farm type at the mean as climate changes in Table 3. If 

temperature increases by 1 degree Celsius, farmers switch away from crop-only farms or 

livestock-only farms to mixed farms. By having both crops and livestock, farmers can 

offset some harm done by natural conditions. If rainfall increases, farmers are more likely 

to choose crop-only rainfed farms and reduce irrigated farms and livestock-only farms. 

Higher rainfall allows farmers to avoid the high cost of irrigation and to reap the high 

profits of crops over livestock. 

Once a farmer has selected a farm type, he will choose the optimal level of inputs and 

                                            
4 The paper uses surface water availability for each district. However, climate change might affect the 
availability of ground water as well (Correspondence with Zilbermann 2008) 
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outputs to maximize conditional net revenues from the chosen farm type. We estimate 

conditional net revenue regressions in Table 4 for each farm type.  We remove potential 

selection biases by introducing a set of selection bias variables (Heckman 1979, Dubin 

and McFadden 1984) and then using OLS. The five regressions reveal that several control 

variables are significant. Although soils were not generally significant in the choice of 

farm types, soils do influence conditional net revenues. Crop-only rainfed farms earn 

lower incomes if they have Lithosol soils. When the soil type is Verisols, crop-only 

irrigated farms or crop-only rainfed farms earn lower incomes. West African farmers earn 

more profit when they are crop-only rainfed farmers while they earn less when they are 

mixed rainfed farmers. Having electricity improves farm incomes for all farm types, but 

especially that of mixed irrigated farms.  

The five regressions in Table 4 reveal that both temperature and precipitation variables 

are significant determinants of conditional incomes. The shape of the conditional income 

response to seasonal climate variables, however, is complex and certainly not linear.  

Quite often the response is concave to one season and convex to the other.  The 

convexity of the response also is in one direction for rainfed farms and in the opposite 

direction for irrigated farms.  

The regressions correct for selection bias using cross selection terms (not own terms). 

The coefficients on these terms show how the errors in the choice equation are related 

with the errors in the conditional income regressions. Many of the coefficients are 

significant suggesting that selection bias is present in the sample. The positive coefficient 

for the mixed-irrigated farm selection in the crop-only rainfed regression implies that 

farms which are predicted to be mixed-irrigated earn higher profits than the other crop-

only rainfed farms. By contrast, the livestock-only farm selection coefficient is negative 

in both the crop-only rainfed and mixed rainfed farm equations implying that farms that 

were predicted to be livestock-only earn lower net revenues than other farms.  The 

livestock-only farm selection coefficient is positive only in the mixed irrigated farm 

regression.   

Table 5 calculates the marginal effects of climate changes on conditional net revenues at 

the mean climate of the sample. In general, the marginal net revenue results in Table 5 
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support the marginal choice results in Table 3.  If a climate change increases (decreases) 

the relative income from a specific farm type, that farm type is more (less) likely to be 

chosen by farmers. For example, as precipitation increases, the net revenue from rainfed 

farms increases and the net revenue from irrigated farms drops. In Table 3, we see 

farmers choose rainfed farms more often and irrigated farms less often. As temperature 

increases, the net revenue from crop-only rainfed farms falls and so does the probability 

of choosing this farm type.  With warmer temperatures, farmers earn more net revenue 

from mixed irrigated farms and so farmers shift to this farm type. The only exception 

where the sign of the change in net revenue is different from the sign of the change in 

choice probability concerns the temperature effect on crop-only irrigated farms. Warming 

is predicted to increase the net revenue but reduce the chance this farm type is chosen. It 

is possible that this odd result is due to the inclusion of Egypt in the sample, where 

despite the relatively moderate temperatures along the Nile, every farm is irrigated.  

5. Forecasting Climate Change Impacts and Adaptations 

The analysis in the previous section provides ample evidence that climate affects the 

choice and conditional incomes of each farm type. As climate change unfolds in the 

coming century, these choices and incomes from each of these farm types are expected to 

change across Africa. In this section, we simulate the changes in the probability and 

conditional income of each farm type for different climate scenarios. Farm type choice 

changes will hinge on many factors such as economic development, technological change, 

agricultural policy, and international trade. The current model assumes these factors 

remain unchanged. We consequently are not predicting what the future will look like but 

rather just trying to understand the role of climate change.  In order to make serious 

predictions of future outcomes, it is important that future studies take account of changes 

in these other factors. 

We examine a set of climate change scenarios predicted by Atmospheric-Oceanic 

General Circulation Models to provide a range of estimates that are consistent with the 

predictions in the most recent IPCC (Intergovernmental Panel on Climate Change) report 

(IPCC 2007). Specifically, we use the A1 scenarios from the following three models: 

CCC (Canadian Climate Centre) (Boer et al. 2000), CCSR (Centre for Climate System 
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Research) (Emori et al. 1999), and PCM (Parallel Climate Model) (Washington et al. 

2000). Table 6 presents the average seasonal mean temperatures and precipitations 

predicted by these three climate models for Africa for the year 2060, half a century later. 

The PCM scenario is a relatively mild and wet outcome with 1.5 degree increase in 

temperature and 5 percent increase in rainfall.  The CCC scenario is a hot and dry 

outcome with 3.5 degree Celsius increase in temperature and 10 percent decrease in 

rainfall. The CCSR scenario is between the other two predictions.  In addition to these 

continental level changes, the predictions, especially of rainfall changes, for individual 

countries vary slightly from the continental average for each climate scenario. 

We then simulate the changes in the probability of each farm type given each climate 

scenario. The results in Table 7 show that under the PCM scenario, rainfed farms, both 

crop-only and especially mixed, are predicted to increase while irrigated farms, both 

crop-only and especially mixed, and livestock-only farms decrease. These changes are 

mainly due to the effects of increasing rainfall under this scenario. The results of the 

CCSR scenario are similar but not identical to those of the PCM scenario. With the 

CCSR scenario, the effects on mixed rainfed and irrigated farms are smaller.  The 

results under the CCC scenario differ markedly. With the hot and dry CCC scenario, 

farmers move away from specialized farms such as crop-only or livestock-only farms 

towards mixed farms, both rainfed and irrigated. These results reveal that the distribution 

of future farm types across Africa will change and the change will depend greatly on the 

climate scenario.  

Table 8 shows the results of the simulated changes in conditional net revenue for each 

farm type and climate scenario. The changes in conditional net revenues support the 

changes in the choice probabilities in Table 7.  The net revenues of crop-only rainfed 

farms and mixed rainfed farms increase propelling farmers to choose these farm types 

more often in the PCM scenario. Note that although the net revenues of mixed irrigated 

farms also increased with the PCM scenario, the increase was relatively small compared 

to other choices. Consequently, farmers shifted away from mixed irrigation. With the 

CCSR scenario, the conditional revenue results are also consistent with the direction of 

farm type choices.  The only odd result is that the model predicts a very large reduction 

in the net revenue from mixed irrigation but only a relatively small reduction in 
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frequency. Under the CCC scenario, the net revenues of mixed rainfed farms increase, 

but the net revenues of livestock-only farms and crop-only irrigated farms fall. 

Consequently farmers move away from the specialized farm types in favor of mixed 

farms that have both crops and livestock.  

We next examine the final impacts of climate change assuming that farmers do not 

change farm type. That is, we adopt the assumption of many existing studies of climate 

impacts that assume farmers continue to choose their current farm type as climate 

changes (Rosenzweig and Parry 1994, Schlenker et al. 2005, Deschenes and Greenstone 

2007). We multiply the current probability of each farm type for each district times the 

predicted conditional income for each climate scenario. These “exogenous model” results 

are shown in Table 9. With the CCC scenario, farmers will lose up to 75 percent of their 

incomes. With the CCSR scenario, the expected losses climb to 100 percent of their 

income. Only with the PCM scenario is there a predicted beneficial effect with a 65 

percent increase in expected income.  

We contrast the “exogenous model” results with the Structural Ricardian results that 

include the choice of farm type, the “endogenous model” results in Table 9.  The 

endogenous model results combine the results from Table 7 and Table 8 to estimate the 

changes in the expected income for African farmers. Currently, African farmers earn 

about 550 USD per hectare of farmland.  With the CCC scenario, farmers are expected 

to lose 40 percent of their incomes in contrast to the 70 percent predicted by the 

exogenous model.  With the CCSR scenario, farmers in some countries get large gains 

which offset the large losses of farmers in other countries. In contrast, the exogenous 

model predicts that both sets of farmers lose because conditions change. By allowing 

farmers to shift to more profitable farm types, the endogenous model predicts far smaller 

impacts than the potential effects predicted by the exogenous model. Even in the case of 

the PCM scenario, the endogenous model predicts a smaller benefit because the 

exogenous model overestimates the potential gains from choices farmers will move away 

from.     

6. Conclusion and Policy Discussion 

This paper provides a new econometric method to measure the impacts and adaptations to 
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climate change on African agriculture. The Structural Ricardian technique is used to 

explain farmers’ choice of different farming types and their subsequent conditional net 

revenues.  Special care is taken to allow this choice to be endogenous and to remove 

sample selection biases.  The model is estimated from the data obtained from individual 

farmers across 10 countries in Africa.  

The results reveal that farmers currently choose farm types depending on climate and 

other exogenous variables such as soils, water flows, household characteristics, and 

prices. Higher temperatures encourage farmers to adopt mixed farming and avoid 

specialized farms such as crop-only farms or livestock-only farms. Increases in 

precipitation induce farmers to rely on rainfed versus irrigated crops.  

The analysis of conditional net revenues supports the results from the choice model of 

farm types. As temperatures warm, farm net revenues from crop-only farms or livestock-

only farms fall whereas net revenues from mixed farms increase. With precipitation 

increases, farm net revenues from irrigated farms fall and net revenues from rainfed 

farms increase.  These changes in net revenues encourage farmers to change their choice 

of farm type. 

The model is then used to simulate how climate might affect future farm type choices and 

conditional net revenues.  Different climate scenarios are explored to reveal a plausible 

range of outcomes by 2060.  With the mild wet PCM climate scenario, Africa is 

predicted to have more rainfed farms and less irrigated farms and livestock-only farms. 

Under the very hot and dry CCC climate scenario, farmers are expected to choose mixed 

farms more often and crop-only irrigated farms or livestock-only farms less often. The 

results from the CCSR scenario are similar to those from the PCM scenario except that 

there are smaller changes in mixed farms. The net revenues generated by each farm type 

would shift in a comparable fashion. Under the PCM scenario, the net revenues of rainfed 

crop-only farms would increase causing farmers to shift to crop-only rainfed farming. 

There is also a large shift from mixed irrigated to mixed rainfed farms in the PCM 

scenario. With the CCSR scenario, there is still an increase in crop-only rainfed farms but 

the changes in mixed farms are smaller. In contrast, under the CCC scenario, there is a 

decrease in the net revenues for all farm types except mixed rainfed farming causing 
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farmers to shift towards mixed rainfed farms in the future.   

Putting all the information together, we calculated the expected impacts of climate 

change on African agriculture. If farm types are assumed to be fixed and unchanging, 

farmers are predicted to lose 75 percent of their income under the CCC scenario and over 

100 percent of their income under the CCSR scenario.  However, when the model takes 

into account the endogenous adaptation decisions of farmers, farm income is predicted to 

fall by 40 percent under the CCC scenario and not at all under the CCSR scenario. 

Omitting adaptation seriously overestimates the damages of climate change. 

In conclusion, the Structural Ricardian model reveals that adaptation is a critical facet of 

impact estimation. Farmers and other economic agents who will be impacted by climate 

change will adapt to reduce the potential harm. It is important that analysts take these 

adaptations into account or they may dramatically overestimate climate damages. 

Understanding adaptation is also important for its own sake as governments consider how 

they may assist in helping efficient adaptations to take place. Adaptations must be made 

to fit local conditions and so will have to be designed carefully to vary as needed across 

the landscape. 

In addition to the many changes that farmers can make for themselves, government can 

also make significant contributions to adaptation.  First, they can conduct research and 

development that leads to new crops and animals more suited for hotter and possibly 

dryer conditions.  Governments can provide credit to help farmers invest in their land 

and farming operations.  Governments can create and protect private property rights so 

that farmers have the incentive to autonomously adapt. Governments can provide access 

to reduce the cost of farmers getting their product to market. Governments can encourage 

economies to develop and diversify away from agriculture so that only a small fraction of 

African economies would be at risk from climate change.  Finally, if falling productivity 

leads to some areas being unable to support their populations, governments can help 

people migrate to more promising opportunities in other regions or perhaps in urban areas. 
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Table 1: Number of Farms of Each Type 
 

 Number Percentage 
Crop-only Rainfed 2397 28.4

Crop-only Irrigated 851 10.1

Mixed Rainfed 3517 41.7

Mixed Irrigated 1159 13.8

Livestock Only 503 6.0

Africa Total 8427 100.0
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Table 2: Multinomial Logit Model of Farm Type Choice 
 
 Crop Only Rainfed Crop Only Irrigated 
 Coefficient. Chi sq Coefficient. Chi sq 
Intercept 9.833 17.57 12.247 22.53 
Summer Temperature -0.950 34.34 -1.055 30.43 
Summer Temperature2 0.0205 41.32 0.0202 27.58 
Summer Precipitation 0.000783 0.02 -0.032 27.41 
Summer Precipitation2 0.000017 0.65 0.000109 20.34 
Winter Temperature 0.217 1.64 0.351 4.27 
Winter Temperature2  -0.00576 1.56 -0.00593 1.53 
Winter Precipitation  0.0401 22.02 -0.0395 13.13 
Winter Precipitation2 -0.00011 2.73 0.00012 2.16 
Electricity -0.502 24.96 -0.515 16.34 
Fluvisol Soil -2.052 0.38 0.061 0.00 
Lithosol Soil 2.554 1.91 -0.742 0.10 
Verisol Soil 0.634 0.16 -1.103 0.33 
West Africa -0.142 1.00 1.958 96.11 
Maize price 0.505 0.38 -1.586 1.81 
Water Flow spring -2.555 19.51 1.150 2.77 
Water Flow summer 0.648 12.09 -0.335 2.07 
Millet price -0.947 1.42 -4.288 14.64 

 
Note: N=7965. Likelihood Ratio Test: P<0.0001 
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Table 2: Continued.  
 
 Mixed Rainfed Mixed Irrigated 
 Coefficient. Chi sq Coefficient. Chi sq 
Intercept 6.228 7.33 12.048 24.22 
Summer Temperature -0.569 12.70 -1.018 32.64 
Summer Temperature2 0.0128 16.56 0.0196 30.28 
Summer Precipitation 0.00314 0.39 -0.0287 23.99 
Summer Precipitation2 -6.48E-06 0.10 0.000118 25.20 
Winter Temperature 0.173 1.11 0.268 2.53 
Winter Temperature2  -0.00451 1.01 -0.00266 0.32 
Winter Precipitation  0.0261 9.55 -0.0306 5.89 
Winter Precipitation2 -0.00005 0.66 -0.00007 0.35 
Electricity -0.149 2.24 -0.257 4.46 
Fluvisol Soil -0.699 0.05 0.535 0.01 
Lithosol Soil 2.282 1.54 -3.105 1.09 
Verisol Soil 0.079 0.00 -3.460 1.92 
West Africa -0.048 0.12 2.011 120.02 
Maize price 0.919 1.33 -6.462 27.62 
Water Flow spring -2.616 20.65 1.252 3.83 
Water Flow summer 0.634 11.60 -0.324 2.27 
Millet price -0.612 0.62 -1.139 1.30 
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Table 3: Marginal Climate Effects on Farm Type Probability (Percent) 
 
  Crop-Only 

Dryland 
Crop-Only 
Irrigated 

Mixed 
Dryland 

Mixed 
Irrigated 

Livestock-
Only 

Baseline 26.97 13.00 34.04 22.22 3.76

Temperature (C˚) -0.81 -0.18 0.03 1.16 -0.20

Precipitation (mm/mo) 0.15 -0.08 -0.02 -0.05 -0.01
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Table 4: Conditional Income Regressions 
 

 
Crop-only 
rainfed  

Crop-only 
irrigated 

 Livestock-
only 

 

 Coefficient T stat Coefficient T-stat Coefficient T stat 
Intercept -515.3 -1.01 -3881.4 -1.58 5491.1 2.41 
T sum 61.21 1.50 254.20 1.18 -481.74 -2.32 
T sum2 -0.538 -0.66 -2.843 -0.63 9.624 2.25 
T win -41.03 -0.89 100.38 1.38 89.64 1.00 
T win2 0.0457 0.04 -5.144 -2.58 -2.942 -1.16 
P sum 1.558 1.52 -1.363 -0.29 -9.904 -2.53 
P sum2 0.00752 1.93 -0.00775 -0.45 0.07398 4.24 
P win 4.707 2.37 -15.55 -0.98 28.04 2.34 
P win2 0.0102 0.99 0.0465 0.73 -0.0899 -1.51 
Electricity 99.39 1.87 545.31 1.82 33.51 0.16 
Fluvisol Soil 687.6 0.91 1611.9 0.55 -819.2 -0.38 
Lithosol Soil -716.3 -3.66 -2604.6 -1.68 1152.1 0.65 
Verisol Soil -1508.1 -4.26 -3004.1 -2.31 764.4 1.02 
West Africa 170.59 2.36 -252.91 -0.61 42.87 0.15 
Select Crop-
only rainfed  -2458.5 -1.04 3558.2 1.81 
Select Crop-
only irrigated 597.9 2.30 -1185.9 -1.61 
Select Mixed 
rainfed 587.6 1.37 1204.2 0.82 -2025.3 -1.38 
Select Mixed 
irrigated 918.5 4.43 204.8 0.24 -190.2 -0.37 
Select 
Livestock- 
only -2470.8 -4.59 676.9 1.28   
N 2397 851 574  
R sq 0.22 0.36 0.28  
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Table 4: continued 
 

 
Mixed 
rainfed  

Mixed 
irrigated 

 

 Coefficient t Coefficient t
Intercept 4635.3 6.49 -12835.0 -3.48
T sum -402.07 -8.65 1991.70 5.82
T sum2 8.155 8.69 -37.946 -5.37
T win 195.49 4.06 -926.55 -6.11
T win2 -4.264 -3.40 21.004 5.65
P sum -3.029 -2.83 -6.963 -0.96
P sum2 0.03435 8.28 -0.05856 -2.11
P win 13.407 5.99 -104.786 -5.19
P win2 -0.03216 -2.91 0.37361 4.07
Electricity 0.18 0.00 1737.21 4.65
Fluvisol Soil 1152.4 1.38 -8638.2 -1.17
Lithosol Soil 308.5 1.50 -10251.0 -1.65
Verisol Soil -648.6 -1.47 3310.5 0.68
West Africa -284.2 -3.34 173.9 0.33
Select Crop-
only rainfed 3454.9 11.43 -17158.0 -5.36
Select Crop-
only irrigated 321.7 1.50 1319.4 1.02
Select Mixed 
rainfed  11493.0 4.93
Select Mixed 
irrigated 515.8 2.78
Select Livestock 
only -3891.9 -10.05 4153.1 2.84
N 3529 1175  
R sq 0.23 0.45  
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Table 5: Marginal Effects on Conditional Incomes 
 

 Marginal 
Effects

Marginal 
Effects Elasticities Elasticities 

 T ($/◦C) P ($/mm/mo) T P 
Crop-only rainfed -35.15 26.87 -0.54 1.22 

Crop-only irrigated 36.15 -108.74 0.44 -3.27 
Mixed rainfed 25.24 14.96 0.39 0.68 

Mixed irrigated 9.21 -15.81 0.14 -0.72 
Livestock only -4.55 8.21 -0.07 0.33 
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Table 6: AOGCM Climate Scenarios 
 
 Current 2060 

Summer Temperature (°C )   
CCC 25.7 +3.0 
CCSR 25.7 +2.7 
PCM 25.7 +1.5 
Winter Temperature (°C )   
CCC 22.4 +4.0 
CCSR 22.4 +2.6 
PCM 22.4 +2.0 
Summer Rainfall (mm/month)   
CCC 149.8 -21.7 
CCSR 149.8 -5.6 
PCM 149.8 -11.1 
Winter Rainfall (mm/month)   
CCC 12.8 +5.0 
CCSR 12.8 +2.7 
PCM 12.8 +17.9 
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Table 7: The Change in Probability of Farm Type by Climate Scenario in 2060 (percent) 
 

 
Crop only 
rainfed 

Crop only 
irrigated 

Mixed 
rainfed 

Mixed 
irrigated 

Livestock 
only 

Baseline 26.97 13.00 34.04 22.22 3.76 
   
CCC +1.21 -2.15 +1.17 +0.73 -0.95 
CCSR +7.21 -2.84 +2.60 -5.94 -1.04 
PCM +6.33 -1.49 +7.41 -10.19 -2.05 
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Table 8: The Change in Conditional Net Revenue by Climate Scenario in 2060 
(USD/yr/ha) 
 

 
Crop-only 
rainfed 

Crop-only 
irrigated 

Mixed 
rainfed 

Mixed 
irrigated 

Livestock 
only 

Baseline 423.27 505.20 526.44 529.50 165.14 
       
CCC -22.54 -328.18 136.99 -367.80 -58.16 
CCSR 217.33 -196.04 322.80 -967.33 253.70 
PCM 604.24 -382.27 461.91 238.81 191.66 
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Table 9: Predicted Change in Expected Income by Climate Scenario in 2060 (USD/yr/ha) 
 
(1) Farm Type Exogenous  
Scenario Change % Change Lower 95% Upper 95% 
CCC -415 -75% -435 -395
CCSR -628 -114% -661 -596
PCM +358 +65% +281 +434

 
 
(2) Farm Type Endogenous  
Scenario Change % Change Lower 95% Upper 95%
CCC -221 -40% -233 -210
CCSR +26 +5% +13 +38
PCM +278 +50% +260 +295

 
 
Baseline value is $535 yr/ha.  Bootstrapping was used to obtain upper and lower 
estimates of expected impacts. 
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