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Abstract

Background: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed
decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include
cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and
bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles
based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles
(BEV).

Methodology/Principal Findings: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW)
analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and
respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile’s wheels to the chemical
energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base
line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and
SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW
efficiencies, nearly four times that of ethanol-ICE.

Significance: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would
be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year),
through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV:
much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.
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Introduction

The sustainability revolution from non-renewable sources to

renewable sources is the defining challenge of our time [1,2,3].

Mobility usually represents the level of a civilization [4,5]. Light-

duty passenger vehicles, which constitute the largest type of trans-

portation energy consumption among different transportation

modes, have some special requirements, such as high energy storage

capacity in a small container (e.g., ,50 liters), high power output

(e.g., ,20–100 kW per vehicle), affordable fuel (e.g., $,20–30/GJ),

affordable vehicle, low costs for rebuilding the relevant infrastruc-

ture, fast charging or refilling of the fuel (e.g. several min per time),

and safety concerns [5,6,7]. Such strict requirements result in

limited choices for fuels and respective powertrain systems. Here

powertrain refers to the group of components that generate power

from stored energy and deliver it to wheels of vehicles running on

the road surface, including the engine, transmission, drive shaft,

differentials, and wheels [8,9]. Therefore, current light-duty pas-

senger vehicles mainly rely on non-renewable liquid fuels and

internal combustion engines (ICE). But the depletion of crude oil,

accumulation of greenhouse gases, concerns of national energy

security, and creation of manufacturing jobs are motivating the

development of sustainable transportation biofuels based on local

renewable biomass [1,3,9,10].

Most ethanol is made from corn kernels and sugarcane, but this

practice raises heated debate due to competition with food sup-

plies; furthermore, its contribution to the transport sector is

minimal or modest [1,11]. Lignocellulosic biomass is presently

believed to be the only major renewable bioresource that can

produce a significant fraction of liquid transportation fuels and

renewable materials in the future [2,9,11,12] because the overall

energy stored in phytobiomass each year is approximately 30-fold

of the energy consumed for transportation [9,13]. But the future

role of biomass in the transport sector remains in debate [1,14,15].
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A great variety of biofuels can be produced from lignocellulose

biomass, including cellulosic ethanol [10,16], butanol and/or long

chain alcohols [17,18], electricity [19,20], bioalkanes [21], fatty

acid esters [6,22,23], hydrogen [24,25,26,27], hydrocarbons [28,

29], and waxes [22]. The biofuels that will become short-, middle-

and long-term transportation fuels is a matter of vigorous debate.

Among them, some biofuels may have a particular niche market.

For example, jet planes require high-density liquid fuels [6,17,

21,22]. First, the analysis presented here is restricted to the largest

transportation fuel market – fuels for light-duty passenger vehicles.

Second, this analysis starts from less costly lignocellulosic biomass

that can be collected and delivered at reasonable costs (e.g., ,$60–

100 dollars per ton) [9,11]. Third, algal biofuel production or

other renewable electricity generation (e.g., solar and wind

electricity) is not covered in this paper.

Several types of powertrain systems have been developed to

convert stored energy to kinetic energy, including internal com-

bustion engines (e.g., gas ICE, diesel ICE, jet turbine, and rocket

turbine), external combustion engines (e.g., steam engine and

steam turbine), and electric motors. Because of special require-

ments of passenger vehicles, such as weight-to-power ratio (e.g.,

one to several g/W), engine costs (e.g., tens dollars/kW), and

engine lifetime (e.g., ,5,000 h), only three engines are acceptable

for passenger vehicles: gas ICE, diesel ICE, and electric motor.

Considering electricity stored in batteries and possible on-board

electricity generation systems (e.g., hydrogen proton exchange

membrane (PEM) fuel cell) plus their hybrids, this analysis

attempted to compare six current and future powertrain systems:

gas-based ICE vehicles (ICE-gas) [7,8], hybrid electric vehicles

based on gasoline ICE (HEV-gas) [30], hybrid electric vehicles

based on diesel (HEV-diesel) [30], fuel cell vehicles based on

compressed H2 (FCV) [31,32,33,34], battery electric vehicles

(BEV) [20,32], and sugar (hydrogen) fuel cell vehicles (SFCV)

[3,5,9].

Numerous life cycle analyses (LCA) have been conducted to

investigate the potential impacts of biomass/biofuels on energy

applications, greenhouse gas emissions, and even water footprint

[10,14,15,35,36,37,38,39,40,41,42,43,44]. But such analyses rely

heavily on numerous assumptions, uncertain inputs (e.g., fertiliz-

ers, pesticides, farm machinery), energy conversion coefficients

among different energy forms and sources, system boundaries, and

so on. For example, conflicting conclusions have been made even

for well-known corn ethanol biorefineries [10,36,37].

Here we suggest developing an energy efficiency analysis for

biomass-to-wheel (BTW), a ratio of kinetic energy of the wheels of

an automobile to the chemical energy of delivered biomass (Fig. 1).

Conducting this BTW analysis is simple and straightforward

because it not only avoids uncertainties or debates for (i) biomass

production-related issues, (ii) feedstock collection and transport,

and (iii) land use change, but also excludes water consumption

issues and greenhouse gas emissions in the whole biosystem.

Therefore, energy efficiency analysis (but not life cycle analysis)

may not only be helpful in narrowing down numerous choices

before more complicated LCA and techno-economic analyses are

conducted, but may also increase the transparency of such

analyses.

In this article, we present a simple biomass-to-wheel (BTW)

efficiency (gBTW ) analysis methodology involving three elements --

biomass-to-fuel (BTF), fuel distribution, and fuel-to-wheel (FTW)

(Fig. 2). Using this method, 13 combinations of different biomass-

to-biofuel approaches and their respective powertrain systems

were analyzed as compared to a baseline – corn-ethanol-ICE. The

identification of high BTW efficiency scenarios would help make a

more informed decision for how to utilize (limited) biomass

resource more efficiently. Following this, a more detailed LCA

should be conducted for evaluating potential impacts associated

with identified inputs and releases and for compiling an inventory

of more relevant energy and material inputs as well as environ-

mental effects.

Methods

The biomass-to-wheel efficiency (gBTW ), an energy conversion

ratio of an automobile’s kinetic energy to the harvested and

delivered biomass in the front of the door of biorefineries, involves

three sequential elements – biomass-to-fuel production, fuel trans-

port and distribution, and the powertrain system responsible for the

fuel-to-wheel conversion (Fig. 2). The BTW efficiency is the lumped

efficiency from chemical energy in biomass to kinetic energy for

vehicle driving. The gBTW value can be calculated as below

gBTW~
W

EB

~gBTF � (1{gTDL) � gFTW ð1Þ

where

W is the kinetic energy transferred to wheels;

EB is the chemical combustion energy of the biomass, where dry

corn stover as a typical biomass contains ,65% carbohydrates

(cellulose and hemicellulose, mainly), ,18% lignin, ,5% ash,

,12% other organic molecules [45,46]; and the EB value is

16.5 MJ of low heating value/kg of corn stover [47];

gBTF is the biomass-to-fuel (BTF) efficiency through biorefineries

or power stations without significant inputs or outputs of other

energy;

gTDL is the fuel loss efficiency during its transport and

distribution; and

gFTW is the fuel-to-wheel (FTW) efficiency from the fuel to

kinetic energy through powertrain.

The gBTF value can be calculated as below

gBTF ~EF=EB ð2Þ

where EF is the fuel produced in biorefineries or power stations.

The gBTF values of current corn ethanol as a reference range from

46% to 50% [48], and the value of 49% is chosen as a baseline

[10]. Through the biomass sugars platform, potential biofuels

include cellulosic ethanol, butanol, fatty acid esters (ester-diesel),

hydrogen, and methane. Through syngas made by a thermo-

chemical pathway, potential biofuels are ethanol, hydrogen,

methanol, dimethyl ether (DME), FT-diesel, and electricity

[49,50,51]. Also, electricity can be produced through direct

combustion for the generation of steam followed by a steam

turbine/generator, or biomass integrated gasification combined

cycle (BIGCC) to fuel cells (Table 1).

Different powertrains are required to convert different biofuels

to the kinetic energy of the wheels. The gFTW value can be

calculated as a ratio between the kinetic energy on wheels (W) and

fuel energy in the tank (ET):

gBTW ~W=ET ð3Þ

For liquid biofuels, powertrain systems are gasoline ICE, HEV-

gas, and HEV-diesel. Fuel cell vehicles run on stored compressed

hydrogen, through a PEM fuel cell stack and an electric motor.

The sugar fuel cell vehicle (SFCV) is a hypothetical powertrain

system, where sugar is a hydrogen carrier, an on-board biore-
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former generates high-purity hydrogen for PEM fuel cell stacks,

and the remaining powertrain parts are the same as FCV [5,9].

The battery electricity vehicle (BEV) is a battery/motor system

based on rechargeable batteries that can store electricity.

The gTDL value can be calculated as fuel consumed for its

transport and distribution from biorefineries to end-users (vehicles)

gTDL~EC=(ECzET ) ð4Þ

where EC is the energy consumed in the process of fuel transport

and distribution, ET is the fuel energy delivered to end users (i.e.,

powertrains), and EF = EC + ET.

Fuel losses during transport and distribution were obtained from

the Argonne National Laboratory’s model Greet 1.8c [52].

Detailed data sources and efficiency calculations are available in

Table 2.

Results

Different scenarios of fuel production through sugar, syngas,

and steam platforms as well as six different powertrains viz.

internal combustion engine vehicle (ICE), hybrid electric vehicle-

gas (HEV-gas), hybrid electric vehicle-diesel (HEV-diesel), (hydro-

gen) fuel cell vehicle (FCV), battery electric vehicle (BEV), and

sugar fuel cell vehicle (SFCV) are shown in Figure 3.

Biomass-to-fuel efficiency (gBTF )
All biomass-to-fuel efficiency data plus their original data and

units for different biomass pathways are listed in Table 1, and their

representative gBTF values are presented in Fig. 4.

In this study, we use corn stover as a representative biomass, in

which total carbohydrates (including cellulose and hemicellulose)

account for approximately 60–65% of combustion energy in

biomass. Through the biochemical (sugar) pathway, the remaining

chemical energy in biomass, mainly lignin, is consumed for

running pretreatment as well as sugar isolation and product

separation [45]. In general, ,35–40% of the chemical energy of

biomass is enough to run biorefineries without external energy

input [45,53]. The gBTF values for sugar-to-biofuels mainly

depend on sugar isolation yields and sugar-to-fuel yields during

microbial fermentation or enzymatic biotransformation. In this

study, the gBTF value is 57%, i.e., ,88–95% of sugar release from

Figure 1. Different pathways for biofuels production from lignocellulosic biomass. The current energy efficiency analysis focuses on the
delivered biomass-to-wheel efficiency related with conversion, transportation and power train systems.
doi:10.1371/journal.pone.0022113.g001

Figure 2. The scheme of energy efficiency analysis for biomass-to-wheel efficiency calculation -- gBTW ~
W

EB

~gBTF � (1{gDL) � gFTW .
doi:10.1371/journal.pone.0022113.g002

Fuel Independence Based on Biomass

PLoS ONE | www.plosone.org 3 July 2011 | Volume 6 | Issue 7 | e22113



biomass, in agreement with data elsewhere [45]. Given sugar

yields of 88–99% for cellulose and hemicellulose and sugar-to-

ethanol yields of 92–95%, the gBTF value of cellulosic ethanol

would be 50%, with a range of 48–56% [10,53]. Given the sugar-

to-butanol yields from 82% (now) [17] to 93% (future) [6], the

gBTF value for butanol fermentation would be about 48% with a

range of 47–53%. Methane can be produced by anaerobic

fermentation mediated by a microbial consortium, where micro-

organisms convert all organic components except non-hydrolytic

lignin to methane. Therefore, gBTF values range from 62 to 81%

[54,55]. The practical gBTF value of methane may be approxi-

mately 65%, higher than 50% (ethanol) and 48% (butanol). In

contrast to anaerobic biofuels fermentations, long chain fatty acid

esters (microdiesel) must be produced from sugars through semi-

aerobic fermentation due to an imbalance of NAD(P)H [6,22,23].

Because semi-aerobic fermentation consumes a significant amount

of sugar for the synthesis of cell mass than anaerobic fermentation,

less carbohydrate would be allocated to the production of micro-

diesel [6,56]. The gBTF values of the ester-diesel fermentation

would be about 35%, in the range of 7 to 37% depending on the

fuel yields, from 13% [22] to 64% (future) [6].

Syngas can be produced from biomass through gasification –

partial combustion at temperatures above 1000 K and in the

presence of oxygen and/or water. Gasification is a relatively

mature technology, so a significant fraction of biomass must be

consumed for partial combustion, resulting in relatively low energy

efficiencies, even though all organic components can be utilized

[49,50,51]. The gBTF values for hydrogen generation from

biomass range from 55% [57] to 71% [58] with a mean value

of ,60%. The gBTF values for methanol, DME and FT-diesel

vary from 51% [59] to 55% [31], from 39% to 57% [60], and

from 41% [31] to 52% [61], respectively. Preferred gBTF values

Table 1. Biomass-to-fuel (BTF) efficiency through different biomass utilization pathways.

Biofuel Technology Feedstock Efficiency Original Data Original Data unit Reference

corn ethanol fermentation corn 46.4% 0.372 L/kg dry [95]

fermentation corn 49.4% 0.396 L/kg dry [10]

fermentation corn 50.1% 0.402 L/kg dry [48]

cellulosic ethanol fermentation corn stover 48.4% 0.298 kg/kg [45]

fermentation corn stover 55.6% 0.342 kg/kg [53]

sugar hydrolysis corn stover 55.8% 0.652 kg/kg [53]

hydrolysis corn stover 61.1% 0.714 kg/kg [58]

hydrogen gasification wood 55.0% 55.00 %LHV [57]

gasification almond shells 70.8% 74% HHV [58]

methanol gasification wood 50.9% 0.477 kg/kg [59]

gasification lignocellulose 54.9% 59.0 %HHV [58]

DME gasification energy crop 39.0% 39–56.8% LHV [60]

FT-diesel gasification lignocellulose 41.4% 42.0 %HHV [31]

gasification lignocellulose 52.0% 52.0 %LHV [61]

ester micro-diesel fermentation glucose 7.2% 14.0 % theoretical efficiency [22]

fermentation glucose 36.5% 64 %LHV [6]

butanol fermentation glucose 46.7% 0.350 g/g glucose [17]

fermentation glucose 52.8% 92.6% LHV [6]

methane fermentation ley crops 62.2% 10.6 GJ/dry ton [54]

fermentation energy maize 81.3% 0.374 m3/kg dry maize [55]

electricity boiler lignocellulose 25–43% 25–43% LHV [62]

electricity BIGCC lignocellulose 45.0% 45.0% LHV [63]

BIGCC lignocellulose 32–40% 32–40% LHV [62]

electricity molten carbonate FC lignocellulose 40.2% 40.2% LHV [64]

electricity FC lignocellulose 51.0% 51.0% LHV [65]

doi:10.1371/journal.pone.0022113.t001

Table 2. Distribution energy efficiency loss*.

Distribution energy efficiency loss Input data (Greet 1.8c *)

Biofuel Efficiency loss % Energy input Unit

Electricity 8.00 8.00 %

FT-diesel 1.53 15,557 btu/mmbtu

Dimethylester 3.10 31,980 btu/mmbtu

Methanol 3.29 34,021 btu/mmbtu

Hydrogen 17.5 211,654 btu/mmbtu

Methane 7.54 81,550 btu/mmbtu

Sugar 1.47 5,979 btu/bushel

ester-diesel 0.75 7,541 btu/mmbtu

Butanol 1.35 13,636 btu/mmbtu

Ethanol 1.71 17,387 btu/mmbtu

*http://www.transportation.anl.gov/modeling_simulation/GREET/index.html.
doi:10.1371/journal.pone.0022113.t002
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are 54% (methanol), 52% (DME), and 51% (FT-diesel), respec-

tively. Clearly, the gBTF values for liquid biofuels (methanol, DME

and FT-diesel) are lower than those of hydrogen because of more

catalysis steps and their accompanied energy losses.

Bioelectricity can be produced simply through boiler/steam

turbine technology, with gBTF values ranging from 25% (now) to

43% (future) [62]. The assumed gBTF value is approximately 32%.

Biomass integrated gasification, combining gas and steam turbine

for electricity production (BIGCC), would have improved overall

efficiencies, ranging from 32 to 45% [62,63]. In order to increase

electricity generation efficiency without restriction of the second

law of thermodynamics for turbines, the integrated biomass

gasification and fuel cells would have gBTF values of 40 to 51%

[64,65].

Transport and distribution loss efficiency (gTDL)
Fuel distribution processes consume a fraction of fuel produced

from biorefineries or power stations (Fig. 5). Original data and

units were obtained from the Greet1.8c software (Table 2). Typical

gTDL values for different fuels after normalization are shown in

Figure 5. In general, liquid biofuels have similar efficiency losses

(e.g., 0.8–3.3%). Gaseous fuels, such as hydrogen and methane,

have more energy consumption for their compression, transport,

refilling, and so on. The gTDL values are 17% for compressed

Figure 3. Scenarios of the production of fuels from biomass and their respective fuel power train systems. Solid lines represent the
scenarios that we analyzed; the dotted lines represent possible scenarios that we did not analyze.
doi:10.1371/journal.pone.0022113.g003

Figure 4. Comparison of biomass-to-fuel (BTF) efficiency in the
biorefineries or power stations.
doi:10.1371/journal.pone.0022113.g004

Figure 5. Comparison of transport and distribution loss
efficiency for different fuels.
doi:10.1371/journal.pone.0022113.g005
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hydrogen and 8% for compressed methane (Greet1.8c). The well-

documented distribution efficiency of electricity is 92%, i.e., 8% of

electricity is lost during its distribution (Greet1.8c).

Fuel-to-wheel efficiency (gFTW )
Two major internal combustion engines for passenger vehicles

are gasoline Otto (spark plug firing) ICE and diesel (compression

ignition) ICE. Gasoline ICEs have a low weight-to-power ratio

(e.g., ,1 g engine per W output) but their maximum efficiencies

are relatively low, approximately 32%, due to low compression

ratios [66]. In contrast, diesel ICEs have a higher weight-to-power

ratio (e.g., ,3–4 g engine per W output) and a much higher

energy conversion efficiency, more than 40% [66]. It is reasonable

that diesel ICEs are widely used in heavy-duty trucks, tanks, and

tractors. In Europe, diesel ICE passenger vehicles are more

popular mainly due to higher fuel costs and more climate change

concerns. Audi A3 vehicles based on ICE-diesel have 35.4 miles

per gallon of diesel, higher than ICE-gasoline (24.7 miles per

gallon of gasoline) [67], suggesting a ,26% enhancement in gFTW

efficiency. (Note: the volumetric energy density of diesel is ,13–

14% higher than that of gasoline) [7].

Practical gFTW values of ICEs are much lower than their

maximum efficiency because of (i) the engines operate at ,70% of

their maximum efficiency during most driving conditions, (ii)

,17% loss for engine idling, (iii) ,2% consumption for accessories

(e.g., air conditioning, lighting), and (iv) ,25% loss in transmission

[30,66,68]. Therefore, the gFTW for ethanol-ICE is approximately

14% as a baseline [69], and this value would be improved through

higher compression rate ethanol engine and better transmission

[70,71,72]. Advanced diesel vehicles are expected to have gFTW

values of 20–24% [71]; the gFTW value of 23% is used in this

study.

Hybrid electric vehicles (HEV) can eliminate idling losses, allow

a small engine to work at nearly optimal conditions, and utilize

braking energy with regenerative braking [30,73]. Therefore,

advanced HEV-gas is estimated to have gFTW values of 29–34%

[30,74]. Similarly, the gFTW values of HEV-diesel can be in-

creased to 32–38%, with a preferred value of 37%.

The hydrogen fuel cell vehicle (FCV) is a complicated power-

train system involving compressed hydrogen, FEM fuel cells, an

electric motor, and a rechargeable battery [32,75]. FCVs feature

zero tailpipe pollution and high energy conversion efficiencies

due to PEM fuel cells, whose theoretical energy efficiency from

hydrogen to electricity is up to 83%. As a result, many companies

have attempted big research FCV projects, and some of them

produced prototype FCVs, such as the GM Sequel, the BMW

Hydrogen 7, the Ford Focus FCV-Fuel Cell, the Toyota Fine X,

and the Honda FCX Clarity. The gFTW values of FCVs range

from 41 to 54% [32,75], with a mean value of 45%. SFCVs based

on FCVs would have an on-board bioreformer that can convert

the sugar slurry to high-purity hydrogen and absorb waste heat

from PEM fuel cells. Because the efficiency of sugar-to-hydrogen is

107% based on low heating value [9,24,25], the gFTW value for

SFCV is estimated to be 48% with a range of 44–57%.

Battery electric vehicles (BEV) have the highest gFTW values,

although they still have some energy losses in battery recharging

and release, storage loss, motor, and so on [32,76]. BEVs have

predicted gFTW values from 64 to 86% [32,76,77], with a mean

value of 68%. All fuel-to-wheel efficiencies of different vehicles are

summed up in Table 3 and Fig. 6.

Biomass-to-Wheel (BTW) efficiency (gBTW )
A combination of 12 kinds of biofuel production approaches

and 6 kinds of advanced powertrains for passenger vehicles results

in more than 20 scenarios (Fig. 3). In this analysis, 14 scenarios

were calculated (Fig. 7). The current corn ethanol/ICE scenario

has gBTW value of ,7%, i.e., only 7% of the chemical energy in

corn kernels is converted to the kinetic energy on wheels, implying

a great potential in increasing biomass utilization efficiency. An

ethanol HEV-gas system would double gBTW values to 14–18%,

suggesting the importance of developing hybrid electric vehicles

based on available liquid fuel distribution system. There is no

significant difference in gBTW between butanol and ethanol, but

butanol may have other important future applications, such as

powering jet planes. The gBTW values of methane/HEV-gas and

methanol/HEV-gas are 19% and 17%, respectively, higher than

those of ethanol and butanol, mainly due to higher product yields.

Since ICE-diesel has higher gFTW efficiencies than ICE-gas, the

scenarios based on HEV-diesel through DME and FT-diesel

(except ester-diesel) would have higher gBTW values than HEV-gas

scenarios. For ester-diesel, a significant amount of energy is lost

during aerobic fermentation due to thermodynamic and bioener-

getic limits [6], resulting in low gBTW values. Even for the niche jet

fuels market, the production of ester-diesel through semi-aerobic

microbial fermentation might not be competitive with anaerobic

butanol fermentation [78] and a high-energy-retaining efficiency

hybrid of biocatalysis and chemical catalysis [28].

Although (hydrogen) fuel cell vehicles (FCVs) have higher gFTW

efficiencies than ICE-gas and ICE-diesel, the H2/FCV scenario

Table 3. Fuel-to-wheel (FTW) efficiency for different
powertrains.

Powertrain Efficiency Reference

ICE-gas 11.3–15.2% [30,69,70,71]

ICE-diesel 20–24% [71]

HEV-gas 28.8–31.4% [30,74]

HEV-diesel 34.6–37.6% based on HEV-gas [30,74]
and ICE-diesel [71]

FCV 41.0–53.8% [32,75]

SFCV 43.7–57.3% based on FCV plus sugar to H2

biotransforming efficiency [6,24,25]

BEV 64.4–86% [32,76,77]

doi:10.1371/journal.pone.0022113.t003

Figure 6. Comparison of fuel-to-wheel (FTW) efficiency for
different powertrain systems.
doi:10.1371/journal.pone.0022113.g006
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shows ,46% and ,15% gBTW enhancements over ethanol HEV-

gas and DME HEV-diesel, respectively, because significant energy

loss in hydrogen distribution discounts FCV’s advantages over

HEV-diesel. The sugar/SFCV scenario would have very high

gBTW values of approximately 27% due to lower energy con-

sumption in fuel transport and heat recapture in the sugar-to-

hydrogen biotransformation, compared to the H2/FCV scenario.

BEV scenarios are among the highest gBTW values, from 20% to

28%, with increasing electricity generation efficiencies from direct

combustion, BIGCC, to FC-power.

Discussion

Conducting energy efficiency analysis is simpler, faster, and less

controversial than conducting life cycle analysis because the latter

heavily depends on so many different assumptions and uncertain

inputs. Here we present a straightforward energy efficiency analy-

sis from biomass to wheels for different options, which contains

three elements. Each element can be analyzed separately and

adjusted individually; most of which have data well-documented in

literature (Tables 1–3). Because of the same input and output in all

cases, an increase in energy conversion efficiency nearly equals

impact reductions in carbon and water footprints on the environ-

ment. Most of the results obtained from this biomass-to-wheel

analysis were in good agreement with previous, more complicated

life cycle analyses, supporting the validity of this methodology.

Our analysis suggested that the hydrogen fuel cell vehicle (H2/

FCV) scenario would have at least comparable efficiency with or a

little higher than hybrid electric vehicle (HEV) systems, which was

supported by a previous paper [76]. Another analysis suggested

that the H2/fuel cell scenario had three times higher efficiency

than ethanol/internal combustion engines (ICE) [33], in good

agreement with our analysis (Fig. 7). Through comparison of four

biofuels (i.e., hydrogen, methanol, Fischer–Tropsch (FT)-diesel,

and ethanol) and two powertrain systems (i.e., ICE and FCV), they

recommended FCV due to the highest energy efficiency [31].

These data were comparable with our analysis (Fig. 7). Both the

sugar/sugar fuel cell vehicle (SFCV) and fuel cell (FC)-power/

battery electric vehicle (BEV) scenarios would have nearly four

times that of corn ethanol/ICE-gas, implying the importance of

enhancing BTW efficiency in each conversion element.

A new solution -- sugar-fuel cell vehicles (SFCV)
The concept of SFCV was proposed to address problems

associated with H2/FCV, such as high-density hydrogen storage in

FCV, low-cost sustainable hydrogen production, costly hydrogen

distribution infrastructure, and safety concern [9,25]. In this

system, renewable sugar (carbohydrate) is suggested as a high

hydrogen density carrier, with a gravimetric density of 8.33% mass

H2 and a volumetric density of more than 100 g H2 per liter

[3,5,9]. Transportation and distribution of the sugar/water slurry

or sugar slurry would be easily achieved using available infra-

structure. This hypothetical SFCV based on FCV would contain a

sugar tank and an on-board sugar-to-hydrogen bioreformer, with

a combined sugar tank and bioreformer volume that is much

smaller than a compressed hydrogen tank or other hydrogen

storage approaches [3,5]. The sugar/water slurry would be refilled

rapidly into the sugar container in SFCVs at local sugar stations;

the on-board biotransformer would convert the sugar solution to

high-purity hydrogen and carbon dioxide using a stabilized enzyme

cocktail; and a small-size hydrogen storage container would serve as

a buffer, balancing hydrogen production and consumption. In

addition, feeding a mixture of CO2/H2 or pure hydrogen in the

proton exchange membrane (PEM) fuel cells would dramatically

decrease system complexity and greatly increase system operation

performance, and the waste heat release from PEM fuel cells would

be coupled to the heat needed by the bioreformer. Electrical energy

from PEM fuel cells would be sent to the motor controller/motor/

gears to generate kinetic energy [9]. When extra kinetic energy is

needed for acceleration or start-up, electrical energy stored in the

rechargeable battery would be released, like in a hybrid electric

vehicle [9]. The on-board bioreformer in SFCVs, mediated by the

thermoenzyme cocktails under modest reaction conditions (e.g.,

,80uC and ,1 atm), may be capable of providing high-purity

hydrogen at a rate of ,23.5 g H2/L/h or higher. Given a

bioreformer size of 42.8 L, one kg of hydrogen per hour could then

be produced to drive the PEM fuel cell stack, followed by the electric

motor [5]. High-speed biohydrogen production rates have been

implemented by high cell-density microbial fermentation [79]. It is

widely known that enzymatic reactions usually are at least one

order-of-magnitude faster than microbial fermentations because the

former has no cellular membrane to slow down mass transfer and

much higher biocatalyst loadings, without the dilution of other

biomacromolecules (e.g., DNA, RNA, other cellular proteins)

[3,56,80,81]. Current gasoline/ICE cars require maintenance every

3,000 miles (e.g., 4,800 km) or 3 months, i.e., 50–100 driving hours.

Discovery of thermophilic enzymes that are stable at ,80uC for

more than 100 h has been demonstrated, for example, T. maritima 6-

phosphogluconate dehydrogenase [82]. We expect that enzyme

deactivation in the biotransformer will be solved through infrequent

service maintenance, similar to the oil/air filter change for gasoline/

ICE vehicles. Several technical obstacles of SFCVs include poor

enzyme stability, labile and costly coenzymes, low reaction rates,

and complicated system configuration and control [3,9,56,80]. A

huge potential market (e.g., nearly one trillion of US dollars per

year) provides the motivation to solve these issues within a short

time. Current progress includes the discovery of thermostable

enzymes from extremophiles and low-cost production of recombi-

nant enzymes [80,82,83,84,85,86], engineering redox enzymes that

can work on small-size biomimetic cofactors [56,87,88], and

accelerating hydrogen generation rates [5,9,24,89].

SFCV is better than BEV
Although the biomass-to-wheel efficiency may be the most

important criterion in analyzing future transportation systems,

many factors were related with future choices, including energy

Figure 7. Comparison of biomass-to-wheel (BTW) efficiency for
different biomass utilization scenarios.
doi:10.1371/journal.pone.0022113.g007
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storage density, system compactness, fuel costs, infrastructure,

safety, operation reliability, environmental costs, resource avail-

ability, technology maturity, and improvements potential. Because

the energy densities of lithium ion batteries (0.46–0.72 MJ/kg)

[90,91] are much lower than those of liquid fuels (,30–40 MJ

combustion energy/kg) and sugars (,11–14 MJ electricity/kg

sugar) [3,5], BEVs will have a very short driving distance, making

the BEV poorly suited for long-distance transportation [32]. If the

energy densities of rechargeable batteries were increased by 10-

fold in the future, safety concerns would likely come into play,

slowing or even preventing wide deployment of such batteries in

BEVs. In fact, it is impossible to increase energy densities of

lithium rechargeable batteries by 10-fold due to physical limits

[90]. Metal/air batteries are supposed to have the highest energy

storage density of all batteries [90]. But regeneration of oxidized

metals is so energy intensive that metal/air batteries may be too

costly for the transport sector. SFCV would have a comparable

gBTW with the FC-boiler/BEV scenario but with much longer

driving distances based on the same fuel weight (i.e., broader

applications). Also, refilling of solid sugar or sugar/water slurry

into SFCVs would be much faster and safer than recharging

batteries for BEVs or refilling compressed hydrogen for FCVs. If

the obstacles to ultra-fast recharging and the life-time of batteries

were solved, a huge infrastructure investment would be required

for upgrading electrical grids, sockets for quick recharging, power

stations, etc. Since SFCV would have ,3.4 times the FTW

efficiency of ethanol/ICE-gas (Fig. 6), one kg of sugar (i.e.,

17 MG/kg) would release more kinetic energy than one kg of

gasoline (i.e., 46.4 MJ/kg) from ICE-gas. Thus, the mass of sugar

delivered in the future may be less than the mass delivered by the

current liquid gasoline/diesel distribution system. Another advan-

tage is the much shorter sugar slurry transportation distance

compared to that of gasoline/diesel, due to local production and

distribution. The distribution of sugar would be done based on

available goods distribution systems. Since SFCVs use biodegrad-

able enzymes as catalysts, they would greatly decrease the

environmental burdens related to BEVs, such as disposing and

recycling used batteries.

Beyond BTW
Assessment of any energy system is really challenging because it

involves so many factors. Generally speaking, efficiency and cost

are usually the two most important criteria. Since thermodynamics

(energy efficiency) determine economics in the long term, SFCVs

and FC-power/BEV seemed to be long-term winner candidates,

but SFCVs have other important advantages. Currently and in

the short term, costs mostly determine market acceptance and

dominance. But cost analysis is more complicated than energy

efficiency analysis, because the former involves direct costs (e.g.,

fuel, vehicle, etc.), indirect costs (e.g., vehicle service, taxes, sub-

sidies, infrastructure costs for repairing and rebuilding, resource

availability, etc.), and hidden costs (e.g., safety, toxicity, waste

treatment, greenhouse gas emissions, military expenditures, etc.).

In the short term, cellulosic ethanol plus HEV-gas and methane-

HEV-gas may be the most promising options.

Potential roles of biomass
It was important to estimate the role of US biomass resources in

the future transport sector. The net primary production of biomass

in the USA would be approximately 9.83 billion of dry metric tons

in 2030, based on the current net primary (biomass) production

with an annual growth rate of 1% [92], mainly due to higher

photosynthesis yields accompanied with rising CO2 levels [93,94].

Considering the fact that gasoline/bioethanol consumption in

2008 was approximately 140 billion gallons per year and an

assumed annual growth rate of 1%, a switch from ethanol/ICE to

sugar/SFCV would require net biomass energy of 11.60 EJ/year

in 2030. That is, approximately 700 million metric tons of biomass

in 2030, i.e., ,7.1% of calculated annual US biomass (i.e., net

primary production including natural ecosystems plus agricultural

systems), would be sufficient to meet 100% of transportation fuel

needs for light-duty passenger vehicles.

On the prospect of meeting transportation energy needs at

acceptable fuel costs, we would like to suggest that short-term or

middle-term solutions would be ethanol/butanol/methane plus

HEV considering available current fuel distribution infrastructure

and enhanced BTW efficiencies. In the long term, SFCVs will

likely win over BEVs due to advantageous energy storage densities,

safety, infrastructure, and environmental impacts. The great

potentials for increasing gBTW values from ethanol-ICE to the

future systems (HEV and SFCV) suggest that more efficient

utilization of biomass would greatly decrease greenhouse gas

emissions, and biomass use could result in more benefits to the

environment, rural economy, and national security than originally

expected [1]. Through SFCVs, about ,7% of annual US biomass

resources may be sufficient to meet 100% of US light-duty

transportation fuel needs in the future.
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